首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This account reports on the development and function of novel substrate mimetics as artificial substrates for Glu-specific endopeptidases. Firstly, in an empirical way, various aliphatic and aromatic analogs of the already established carboxymethyl thioester-substrate mimetics were designed from simple structure-function relationship studies. The specificity of the newly developed substrates for Staphylococcus aureus V8 protease-catalyzed reactions have been examined by steady-state hydrolysis kinetic studies. Additionally, these studies were expanded to the use of the equally Glu-specific endopeptidase from Bacillus licheniformis (BL-GSE) which can easily be purified from alcalase in high yields. Finally, the novel substrate mimetics were used as acyl donor components in BL-GSE- and V8 protease-catalyzed model acyl transfer reactions. The results clarify the newly developed substrate mimetics as efficient acyl donors as well as BL-GSE as an attractive alternative to V8 protease for enzymatic peptide synthesis.  相似文献   

2.
Human trypsin 4 is an unconventional serine protease that possesses an arginine at position 193 in place of the highly conserved glycine. Although this single amino acid substitution does not affect steady-state activity on small synthetic substrates, it has dramatic effects on zymogen activation, interaction with canonical inhibitors, and substrate specificity toward macromolecular substrates. To study the effect of a non-glycine residue at position 193 on the mechanism of the individual enzymatic reaction steps, we expressed wild type human trypsin 4 and its R193G mutant. 4-Methylumbelliferyl 4-guanidinobenzoate has been chosen as a substrate analogue, where deacylation is rate-limiting, and transient kinetic methods were used to monitor the reactions. This experimental system allows for the separation of the individual reaction steps during substrate hydrolysis and the determination of their rate constants dependably. We suggest a refined model for the reaction mechanism, in which acylation is preceded by the reversible formation of the first tetrahedral intermediate. Furthermore, the thermodynamics of these steps were also investigated. The formation of the first tetrahedral intermediate is highly exothermic and accompanied by a large entropy decrease for the wild type enzyme, whereas the signs of the enthalpy and entropy changes are opposite and smaller for the R193G mutant. This difference in the energetic profiles indicates much more extended structural and/or dynamic rearrangements in the equilibrium step of the first tetrahedral intermediate formation in wild type human trypsin 4 than in the R193G mutant enzyme, which may contribute to the biological function of this protease.  相似文献   

3.
The function of acyl-4-guanidinophenyl esters as substrate mimetics for the serine protease alpha-chymotrypsin was investigated by protein-ligand docking, hydrolysis, and acyl transfer experiments. On the basis of protein-ligand docking studies, the binding and hydrolysis properties of these artificial substrates were estimated. The predictions of the rational approach were confirmed by steady-state hydrolysis studies on 4-guanidinophenyl esters derived from coded amino acids (which alpha-chymotrypsin is not specific for), noncoded amino acids, and even simple carboxylic acid moieties. Enzymatic peptide syntheses qualify these esters as suitable acyl donors for the coupling of acyl components far from the natural enzyme specificity, thus considerably expanding the synthetic utility of alpha-chymotrypsin.  相似文献   

4.
Methoxypolyethylene glycol of molecular weight 5000 was converted to a reactive succinimidyl carbonate form (SC-PEG). The usefulness of this new polymeric reagent for the covalent attachment of polyethylene glycol to proteins was evaluated. SC-PEG was found to be sufficiently reactive to produce extensively modified proteins under mild conditions within 30 min, showing the highest reactivity around pH 9.3. The commonly used succinimidyl succinate derivative of methoxypolyethylene glycol (SS-PEG) served as a reference standard to which the new reagent was compared. The stability of the polymer-protein linkages, studied on a series of PEG-modified bovine serum albumins, provided the single most important difference between the two activated polymers. Urethane-linked PEG-proteins obtained through the use of SC-PEG showed considerably higher chemical stability than SS-PEG-derived conjugates. The measured rate constants of aminolysis (using N alpha-acetyllysine) and hydrolysis showed that SC-PEG is slightly less reactive yet more selective of the two reagents. Hydrolysis of the active groups on SC-PEG was on average twofold slower than that on SS-PEG. The differences in the rates of aminolysis were even smaller than those in hydrolysis. PEG-trypsin conjugates produced by both activated polymers showed similar properties: they had no proteolytic activity, well-preserved esterolytic activity, and enhanced activity toward p-nitroanilide substrates. Michaelis-Menten constants of the modified enzymes were determined using N alpha-benzyloxycarbonyl-L-arginine p-nitroanilide. These measurements indicated that the attachment of PEG to trypsin caused an increase in both the rate of turnover of the substrate and its affinity toward the modified enzymes. Through a series of experiments involving the appropriate polymeric and low-molecular-weight model compounds, it was demonstrated that these increases in amidolytic activity were unrelated to tyrosyl residues acylation by either one of the activated polymers.  相似文献   

5.
P Carter  L Abrahmsén  J A Wells 《Biochemistry》1991,30(25):6142-6148
A mutant of the serine protease, subtilisin BPN', in which the catalytic His64 is replaced by Ala (H64A), is very specific for substrates containing a histidine, presumably by the substrate-bound histidine assisting in catalysis [Carter, P., & Wells, J.A. (1987) Science (Washington, D.C.) 237, 394-399]. Here we probe the catalytic mechanism of H64A subtilisin for cleaving His and non-His substrates. We show that the ratio of aminolysis to hydrolysis is the same for ester and amide substrates as catalyzed by the H64A subtilisin. This is consistent with formation of a common acyl-enzyme intermediate for H64A subtilisin, analogous to the mechanism of the wild-type enzyme. However, the catalytic efficiencies (kcat/KM) for amidase and esterase activities with His-containing substrates are reduced by 5000-fold and 14-fold, respectively, relative to wild-type subtilisin BPN, suggesting that acylation is more compromised than deacylation in the H64A mutant. High concentrations of imidazole are much less effective than His substrates in promoting hydrolysis by the H64A variant, suggesting that the His residue on the bound (not free) substrate is involved in catalysis. The reduction in catalytic efficiency kcat/KM for hydrolysis of the amide substrate upon replacement of the oxyanion stabilizing asparagine (N155G) is only 7-fold greater for wild-type than H64A subtilisin. In contrast, the reductions in kcat/KM upon replacement of the catalytic serine (S221A) or aspartate (D32A) are about 3000-fold greater for wild-type than H64A subtilisin, suggesting that the functional interactions between the Asp32 and Ser221 with the substrate histidine are more compromised in substrate-assisted catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Trypsin catalyzed hydrolysis of seven new chromogenic arginine substrates, N alpha-benzyloxycarbonyl-L-arginine-3-nitro-5X-anilide (X = H, CF3, SO2CH3, F, Cl, Br and I) were studied. These substrates are suitable for studying electronic effects on trypsin activity. The Km and kcat values for the hydrolysis of each substrate were determined and found to differ significantly for the various substrates. The Hammett plot of the catalytic rate constants gave a straight line with a negative rho value (-0.82) thus indicating that electron withdrawing substituents retard the trypsin catalyzed hydrolysis of the new anilide substrates.  相似文献   

7.
1. The corticosteroids cortisol, cortisone and corticosterone were tested for their ability to affect the hydrolysis of serum albumin, insulin and oxyhaemoglobin incubated with trypsin, chymotrypsin, papain and pepsin. 2. Corticosteroids stimulated the hydrolysis of albumin and oxyhaemoglobin with trypsin between 10% and 200% and inhibited the hydrolysis of insulin by 15% (steroid/substrate molar ratio, 5:1). 3. The degree of stimulation of proteolysis for a given substrate depended on both the nature of the steroid and the protease. Corticosterone did not increase the activity of papain and pepsin with any of the substrates tested. 4. Corticosterone stimulated (fivefold) the denaturation of oxyhaemoglobin measured spectroscopically in 2.4% (w/v) sodium hydroxide. Small changes in the absorption spectrum of haemoglobin solutions were also noted at pH7.8 without a marked change in the basic properties of haemoglobin. 5. With regard to the action of corticosterone on the activity of trypsin, the lack of stimulation when benzoylarginine amide was used as a substrate, the lowering of the stimulation on prior heat denaturation of haemoglobin and the high temperature coefficient for stimulation suggest that the steroid resulted in improved access of the protease to susceptible bonds of the substrate.  相似文献   

8.
Protease cleavage site recognition motifs can be identified using protease substrate discovery methodologies, but typically exhibit non‐optimal specificity and activity. To enable evolutionary optimization of substrate cleavage kinetics, a two‐color cellular library of peptide substrates (CLiPS) methodology was developed. Two‐color CLiPS was applied to identify peptide substrates for the tobacco etch virus (TEV) protease from a random pentapeptide library, which were then optimized by screening of a focused, extended substrate library. Quantitative library screening yielded seven amino acid substrates exhibiting rapid hydrolysis by TEV protease and high sequence similarity to the native seven‐amino‐acid substrate, with a strong consensus of EXLYΦQG. Comparison of hydrolysis rates for a family of closely related substrates indicates that the native seven‐residue TEV substrate co‐evolved with TEV protease to facilitate highly efficient hydrolysis. Consensus motifs revealed by screening enabled database identification of a family of related, putative viral protease substrates. More generally, our results suggest that substrate evolution using CLiPS may be useful for optimizing substrate selectivity and activity to enable the design of more effective protease activity probes, molecular imaging agents, and prodrugs. Biotechnol. Bioeng. 2010; 106: 339–346. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
B P Murphy  R F Pratt 《Biochemistry》1991,30(15):3640-3649
Certain acyclic depsipeptides, but not peptides, are substrates of typical beta-lactamases [Pratt, R.F., & Govardhan, C.P. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1302]. This may reflect either the greater chemical reactivity of depsipeptides (and of beta-lactams, the natural substrates) than peptides or the greater ease of distortion of the depsipeptide (ester) than the peptide (amide) group into a penicillin-like conformation. The latter explanation has been shown to be more likely by employment of a novel beta-lactamase substrate. N-(phenylacetyl)glycyl-D-aziridine-2-carboxylate, which combines a high chemical reactivity with a close to tetrahedral amide nitrogen atom. Although this substrate was better (higher kcat/KM) than a comparable depsipeptide for beta-lactamases, it was poorer than the depsipeptide for the Streptomyces R61 D-alanyl-D-alanine peptidase (which catalyzes specific peptide hydrolysis). It therefore seems likely that one vital feature of the putative evolution of a DD-peptidase into a beta-lactamase would have been modification of the active site to, on one hand, accommodate bicyclic beta-lactams and, on the other, exclude productive binding of planar acyclic amides. Certain serine beta-lactamases and the R61 DD-peptidase also catalyze methanolysis and aminolysis by D-phenylalanine of the N-acylaziridine. The latter reaction, the first amide aminolysis shown to be catalyzed by a beta-lactamase, is a very close analogue of the transpeptidase reaction of DD-peptidases. The methanolysis reaction appeared to proceed by way of the same acyl-enzyme intermediate as formed from depsipeptides possessing the same acyl moiety as the aziridine. The kinetics of methanolysis were employed to determine whether acylation or deacylation was rate limiting to the hydrolysis reaction under saturating substrate concentrations. The kinetics of the aminolysis reaction, catalyzed by the Enterobacter cloacae P99 beta-lactamase, showed the characteristics of, and were interpreted in terms of, a sequential mechanism previously deduced for depsipeptides and this enzyme [Pazhanisamy, S., & Pratt, R. F. (1989) Biochemistry 28, 6875-6882]. This mechanism features two separate binding sites, only one of which is productive. Strikingly, the binding of the N-acylaziridine to the nonproductive site was very tight, such that essentially all hydrolysis at substrate concentrations above 0.1Km proceeded via the ternary complex; this could also be true of penicillins.  相似文献   

10.
The rates of hydrolysis of the ester, amide and anilide substrates of p-guanidino-L-phenylalanine (GPA) by Streptomyces griseus trypsin (S. griseus trypsin) were compared with those of arginine (Arg) substrates. The specificity constant (kcat/km) for the hydrolysis of GPA substrates by the enzyme was 2-3-times lower than that for arginine substrates. The kcat and Km values for the hydrolysis of N alpha-benzoyl-p-guanidino-L-phenylalanine ethyl ester (Bz-GPA-OEt) by S. griseus trypsin are in the same order of magnitude as those of N alpha-benzoyl-L-arginine ethyl ester (Bz-Arg-OEt), although both values for the former when hydrolyzed by bovine trypsin are higher by one order of magnitude than those for the latter. The specificity constant for the hydrolysis of Bz-GPA-OEt by S. griseus trypsin is much higher than that for N alpha-benzoyl-p-guanidino-L-phenylglycine ethyl ester (Bz-GPG-OEt). As with the kinetic behavior of bovine trypsin, low values in Km and kcat were observed for the hydrolysis of amide and anilide substrates of GPA by S. griseus trypsin compared with those of arginine substrates. The rates of hydrolysis of GPA and arginine substrates by S. griseus trypsin are about 2- to 62-times higher than those obtained by bovine trypsin. Substrate activation was observed with S. griseus trypsin in the hydrolysis of Bz-GPA-OEt as well as Bz-Arg-OEt, whereas substrate inhibition was observed in three kinds of N alpha-protected anilide substrates of GPA and arginine. In contrast, no activation by the amide substrate of GPA could be detected with this enzyme.  相似文献   

11.
Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively (M. Pacaud, J. Bacteriol. 149:6-14, 1982). The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. We termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [3H]diisopropylfluorophosphate as an active-site labeling reagent, we determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, and endogenous, periplasmic inhibitor of trypsin.  相似文献   

12.
Kinetic parameters of hydrolysis of peptide and protein substrates by psychrophilic endopeptidases from hepatopancreas of the king crab Paralithodes camtschaticus (PC), in particular, by trypsin, collagenolytic protease, and metalloprotease, were measured at different temperatures. The PC trypsin was shown to hydrolyze Bz-Arg-pNA in the temperature range studied (4–37°C) 19 times more effectively than bovine trypsin. The rate constants of hydrolysis of Glp-Ala-Ala-Leu-pNA by the PC collagenolytic protease increased approximately by one order of magnitude along with temperature decrease, while K m decreased by 3.5 times. The effective values of K m for the hydrolysis of azocasein by the metalloprotease insignificantly depend on temperature. We proposed that electrostatic interactions of negative charges around the cavity of active site are critical for the effective hydrolysis of substrates by endopeptidases of the PC hepatopancreas.  相似文献   

13.
N alpha-Benzyloxycarbonyl-p-guanidino-L-phenylalanine beta-naphthylamide (Z-GPA-beta NA) was synthesized and the susceptibility of this compound to trypsin and related enzymes was compared with that of N alpha-benzyloxycarbonyl-L-arginine beta-naphthylamide (Z-Arg-beta NA). Both Z-GPA-beta NA and Z-Arg-beta NA were rapidly and almost completely hydrolyzed by trypsin and pronase. Z-Arg-beta NA was hydrolyzed slowly by thrombin, while Z-GPA-beta NA was not susceptible to this enzyme at all. The rate of hydrolysis of Z-GPA-beta NA by papain was slower than that of Z-Arg-beta NA. Neither beta-naphthylamide substrate was hydrolyzed by alpha-chymotrypsin. The specificity constant (kcat/Km) for the hydrolysis of Z-GPA-beta NA by trypsin was somewhat larger than that for the hydrolysis of Z-Arg-beta NA. Contributions of the benzene ring in the side chain of Z-GPA-beta NA to good binding of this substrate to the specificity site of this enzyme and to the poor fit of the scissile bond in the substrate molecule to the active serine residue are presumed from comparison of the individual kinetic parameters (Km and kcat) for the two beta-naphthylamide substrates. Z-GPA-beta NA was ascertained to be a useful substrate in the study of the binding and catalytic specificities of various trypsin-like enzymes.  相似文献   

14.
Understanding the regulation of physiological processes requires detailed knowledge of the recognition of substrates by enzymes. One of the most productive model systems for the study of enzyme-substrate interactions is the serine protease family; however, most studies of protease action have used small substrates that contain an activated, non-natural scissile bond. Because few kinetic or structural studies have used protein substrates, the physiologically relevant target of most proteases, it seems likely that important mechanisms of substrate recognition and processing by proteases have not yet been fully elucidated. Consistent with this hypothesis, we have observed that K(m) values for protein substrates are reduced as much as 200-15000-fold relative to those of analogous peptide substrates. Here we examine the thermodynamic consequences of interactions between proteases and their substrates using staphylococcal nuclease (SNase) and SNase variants as model protein substrates. We have obtained values for enthalpy, entropy, and K(d) for binding of proteins and peptides by the nonspecific protease trypsin and the highly specific protease urokinase-type plasminogen activator (u-PA). To avoid cleavage of substrates during these measurements, we used inactive variants of trypsin and u-PA whose catalytic serine S195 had been replaced by alanine. Differences in the K(d) values for binding of protein and peptide substrates closely approximate the large differences observed in the corresponding K(m) values. Improved binding of protein substrates is due to decreased enthalpy, and this effect is pronounced for the selective protease u-PA. Fundamental differences in recognition of analogous protein and peptide substrates may have influenced the evolution of protease specificity.  相似文献   

15.
The activities of highly purified human enterokinase (enteropeptidase, EC 3.4.21.9) and bovine trypsin were tested against three synthetic substrates alpha-N-Benzoyl-L-arginine ethyl ester HCl, alpha-N-Benzoyl-DL-arginine-p-nitroanilide HCl and alpha-N-Benzoyl-DL-arginine-2-naphthylamide HCl. There was no detectable hydrolysis of these substrates by enterokinase whereas the kinetic parameters obtained for trypsin were in close agreement with those previously described by other workers. The values for Km and kcat were dependent on the Ca2+ concentration. Hydrolysis of glycine-tetra-L-aspartyl-L-lysyl-2-naphthylamide (Gly(Asp)4-Lys-Nap) by these protease was also studied. Enterokinase-catalysed hydrolysis obeyed simple steady-state kinetics and values for Km of 0.525 mM and 0.28 mM and for kcat of 21.5 s-1 and 28.3 s-1 were obtained in 0.1 mM and 10 mM Ca2+, respectively. Trypsin-catalysed hydrolysis was complex and the response to Ca2+ was sigmoidal partly due to the lability of trypsin at low Ca2+ concentrations. A sensitive specific assay for enterokinase was developed and applied to the measurement of the enzyme in serum; interference by nonspecific arylamidases was eliminated by the addition of Zn2+.  相似文献   

16.
By using very active and very stable trypsin agarose derivatives, we have optimized the design of the synthesis of a model dipeptide, benzoylarginine leucinamide, by two different strategies: (i) kinetically controlled synthesis (KCS), by using benzoyl arginine ethyl ester and leucinamide as substrates, and (ii) thermodynamically controlled synthesis (TCS), by using benzoyl arginine and leucinamide as substrates. In each strategy, we have studied the integrated effect of a number of variables that define the reaction medium on different parameters of industrial interest, e.g. time course of peptide synthesis, higher synthetic yields, and stability of the catalyst, as well as aminolysis/hydrolysis ratios and rate of peptide hydrolysis in the case of KCS. Both synthetic approaches were carried out in monophasic water or water-organic cosolvent systems. We have mainly tested a number of variables, e.g. temperature, polarity of the reaction medium (presence of cosolvents, presence of ammonium sulfate), and exact structure of the trypsin derivatives. Optimal experimental conditions for these synthetic approaches were established in order to simultaneously obtain good values for all industrial parameters. The use of previously stabilized trypsin derivatives greatly improves the design of these synthetic approaches (e.g. by using drastic experimental conditions: 1 M ammonium sulfate (KCS) or 90% organic cosolvents (TCS]. In these conditions, our derivatives preserve more than 95% of activity after 2 months and we have been able to reach synthetic productivities of 180 (KCS) and 1 (TCS) tons of dipeptide per year per liter of catalyst.  相似文献   

17.
The specificity of alkaline mesentericopeptidase (a proteinase closely related to subtilisin BPN') for the C-terminal moiety of the peptide substrate (Pi' specificity) has been studied in both hydrolysis and aminolysis reactions. N-Anthraniloylated peptide p-nitroanilides as fluorogenic substrates and amino acid or peptide derivatives as nucleophiles were used in the enzymic peptide hydrolysis and synthesis. Both hydrolysis and aminolysis kinetic data suggest a stringent specificity of mesentericopeptidase and related subtilisins to glycine as P1' residue and predilection for bulky hydrophobic P2' residues. A synergism in the action of S1' and S2'subsites has been observed. It appears that glycine flanked on both sides by hydrophobic bulky amino acid residues is the minimal amino acid sequence for an effective subtilisin catalysis.  相似文献   

18.
Alam N  Gourinath S  Dey S  Srinivasan A  Singh TP 《Biochemistry》2001,40(14):4229-4233
The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.  相似文献   

19.
Kinetic parameters of hydrolysis of peptide and protein substrates by psychrophilic endopeptidases from hepatopancreas of the king crab Paralithodes camtschaticus (PC), in particular, by trypsin, collagenolytic protease, and metalloprotease, were measured at different temperatures. The PC trypsin was shown to hydrolyze Bz-Arg-pNA in the temperature range studied (4-37 degrees C) 19 times more effectively than bovine trypsin. The rate constants of hydrolysis of Glp-Ala-Ala-Leu-pNA by the PC collagenolytic protease increased approximately by one order of magnitude along with temperature decrease, while Km decreased by 3.5 times. The effective values of Km for the hydrolysis of azocasein by the metalloprotease insignificantly depend on temperature. We proposed that electrostatic interactions of negative charges around the cavity of active site are critical for the effective hydrolysis of substrates by endopeptidases of the PC hepatopancreas.  相似文献   

20.
The action of serine (and cysteine) proteases on peptide esters proceeds, as a generalization, orders of magnitude faster than the corresponding enzymatic hydrolysis of peptide bonds or peptide amides. Esterolysis liberates an alcohol while generating a free carboxyl group on the peptide; the proton produced can be detected by the use of an appropriate indicator. The action of trypsin on benzyloxycarbonylalanylarginine methyl ester was used as a model for the development of a simple microtiter plate assay procedure that takes advantage of the speed of these reactions and the ease of detection afforded by the color change of the indicator. A family of ester substrates of the form benzyloxycarbonylalanyl-X-methyl ester, in which X is one of the 20 common amino acids, was synthesized to allow the determination of the primary specificity profiles of serine proteases. Using a 96-well microtiter plate the specificity profiles of four enzymes with all 20 substrates can be carried out in approximately 4 h per enzyme, including setting up and data processing. The primary substrate preferences of trypsin, chymotrypsin, thrombin, pancreatic elastase, α-lytic protease, subtilisin, and proteinase K were determined to demonstrate the method and were found to be in good general agreement with reported specificities established by more conventional means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号