首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.  相似文献   

2.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

3.
Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.  相似文献   

4.
In neuronal cells the neurotransmitter acetylcholine is transferred from the cytoplasm into synaptic vesicles by the vesicular acetylcholine transporter (VAChT). The cytoplasmic tail of VAChT has been shown to contain signals that direct its sorting and trafficking. The role of clathrin-associated protein complexes in VAChT sorting to synaptic vesicles has been examined. A fusion protein between the VAChT cytoplasmic tail and glutathione S-transferase was used to identify VAChT-clathrin-associated protein adaptor protein 1, adaptor protein 2 and adaptor protein 180 complexes from a rat brain extract. In vivo coimmunoprecipitation confirmed adaptin alpha and adaptin gamma complexes, but adaptor protein 180 complexes were not detected by this technique. Deletion and site directed mutagenesis show that the VAChT cytoplasmic tail contains multiple trafficking signals. These include a non-classical tyrosine motif that serves as the signal for adaptin alpha and a dileucine motif that serves as the signal for adaptin gamma. A classical tyrosine motif is also involved in VAChT trafficking, but does not interact with any known adaptor proteins. There appear to be two endocytosis motifs, one involving the adaptor protein 1 binding site and the other involving the adaptor protein 2 binding site. These results suggest a complex trafficking pathway for VAChT.  相似文献   

5.
The mechanism of transport of membrane proteins from the trans-Golgi to the cell surface is still poorly understood. Previous studies suggested that basolateral membrane proteins, such as the transferrin receptor and the asialoglycoprotein receptor H1, take an indirect route to the plasma membrane via an intracellular, most likely endosomal intermediate. To define this compartment we developed a biochemical assay based on the very definition of endosomes. The assay is based on internalizing anti-H1 antibodies via the endocytic cycle of the receptor itself. Internalized antibody formed immune complexes with newly synthesized H1, which had been pulse-labeled with [(35)S]sulfate and chased out of the trans-Golgi for a period of time that was insufficient for H1 to reach the surface. Hence, antibody capture occurred intracellularly. Double-immunofluorescence labeling demonstrated that antibody-containing compartments also contained transferrin and thus corresponded to early and recycling endosomes. The results therefore demonstrate an intracellular intersection of the exocytic and endocytic pathways with implications for basolateral sorting.  相似文献   

6.
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4‐phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5‐bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane‐associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.  相似文献   

7.
The clathrin adaptor protein complex-1 (AP-1) is a central player in cell physiology and human health. It is best known for its role in linking clathrin to its cargo at the trans-Golgi network and endosomes. It participates in traffic important for the correct function of a large number of organelles, including the trans-Golgi network, endosomes, lysosomes, lysosome-related organelles, and plasma membrane. Although it was one of the first clathrin adaptors identified, new discoveries about cargo and pathways that depend on AP-1 continue to emerge. This review summarizes new research into AP-1 that further illuminates its roles in the traffic of plasma membrane proteins, in maintaining TGN content, and in human disease.  相似文献   

8.
The heterogeneous nature of mammalian PRC1 complexes has hindered our understanding of their biological functions. Here, we present a comprehensive proteomic and genomic analysis that uncovered six major groups of PRC1 complexes, each containing a distinct PCGF subunit, a RING1A/B ubiquitin ligase, and a unique set of associated polypeptides. These PRC1 complexes differ in their genomic localization, and only a small subset colocalize with H3K27me3. Further biochemical dissection revealed that the six PCGF-RING1A/B combinations form multiple complexes through association with RYBP or its homolog YAF2, which prevents the incorporation of other canonical PRC1 subunits, such as CBX, PHC, and SCM. Although both RYBP/YAF2- and CBX/PHC/SCM-containing complexes compact chromatin, only RYBP stimulates the activity of RING1B toward H2AK119ub1, suggesting a central role in PRC1 function. Knockdown of RYBP in embryonic stem cells compromised their ability to form embryoid bodies, likely because of defects in cell proliferation and maintenance of H2AK119ub1 levels.  相似文献   

9.
The trimeric Vps29-Vps35-Vps26 sub-complex of retromer mediates retrograde transport of transmembrane proteins from endosomes to the trans-Golgi network. Our group has recently identified a Vps26 paralogue, Vps26B, which is able to suppress the expression of Vps26A when exogenously expressed in mammalian cells and defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. In this study, we use HEK293 cells stably expressing either Vps26A-myc or Vps26B-myc to address the role of retromer cargo transport and subcellular localization of the two core retromer complexes as defined by the two mammalian-specific Vps26 paralogues. Vps26B-retromer, like Vps26A-retromer, associates with TBC1D5 and GOLPH3. In contrast, no interaction between Vps26B-retromer and cation-independent mannose 6-phosphate receptor (CI-M6PR) was detected, leading to a degradation of this receptor and an increase in cathepsin D secretion. Colocalization of Vps26 paralogues with different endosomally located Rab proteins shows prolonged association of Vps26B-retromer with maturing endosomes relative to Vps26A-retromer. Interestingly, the cycling of CI-M6PR is restored upon deletion of the variable Vps26B C-terminal region indicating that this region is directly responsible for the differential function of the two paralogues. In summary, we show that the two distinct retromer complexes defined by different Vps26 paralogues are not functionally equivalent and that the Vps26B C-terminal region can control cargo selection of the Vps26B-retromer.  相似文献   

10.
The negative signaling receptor cytolytic T lymphocyte-associated Ag-4 (CTLA-4) resides primarily in intracellular compartments such as the Golgi apparatus of T cells. However, little is known regarding the molecular mechanisms that influence this accumulation. In this study, we demonstrate binding of the clathrin adaptor complex AP-1 with the GVYVKM motif of the cytoplasmic domain of CTLA-4. Binding occurred primarily in the Golgi compartment of T cells, unlike with AP-2 binding that occurs mostly with cell surface CTLA-4. Although evidence was not found to implicate AP-1 binding in the retention of CTLA-4 in the Golgi, AP-1 appears to play a role in shuttling of excess receptor from the Golgi to the lysosomal compartments for degradation. In support of this, increased CTLA-4 synthesis resulted in an increase in CTLA-4/AP-1 binding and a concomitant increase in the appearance of CTLA-4 in the lysosomal compartment. At the same time, the level of intracellular receptor was maintained at a constant level, suggesting that CTLA-4/AP-1 binding represents one mechanism to ensure steady state levels of intracellular CTLA-4 in T cells. Finally, we demonstrate that the TCR zeta/CD3 complex (but not CD28) also binds to AP-1 and AP-2 complexes, thus providing a possible link between these two receptors in the regulation of T cell function.  相似文献   

11.
Alzheimer amyloid precursor protein (APP) is the precursor for the Abeta peptide involved in pathogenesis of Alzheimer's disease. The soluble ectodomain fragment of APP (sAPP) functions as a growth factor for epithelial cells, suggesting an important function for APP outside neuronal tissue. Previous studies have shown that in polarized epithelial cells, APP is targeted to the basolateral domain. Tyr653 within the cytoplasmic tail of APP mediates the basolateral targeting of APP, but the sorting machinery that binds to this residue has largely remained unknown. In this study, we analyzed the role of adaptor complexes in the polarized sorting of APP. We show that the medium subunit mu1B of the epithelia-specific adaptor protein (AP)-1B binds onto the cytoplasmic tail of APP in a Tyr653-dependent way. Moreover, ectopic expression of mu1B in cells lacking AP-1B resulted in correction of apical missorting of wild-type but not Tyr653Ala APP. Basolateral secretion of sAPP was found to be independent of Tyr653. We propose a model for polarized targeting of APP according to which sorting of APP to basolateral domain is dependent on binding of AP-1B on Tyr653 in basolateral endosomes. This model is in accordance with the current understanding of sorting mechanisms mediating polarized targeting of membrane proteins.  相似文献   

12.
The adaptor complexes AP-1 and AP-3 are localized to endosomes and/or the trans Golgi network (TGN). Because of limitations in analysing intracellular adaptor function directly, their site of function is a matter of ongoing uncertainty. To overcome this problem and to analyse adaptor sorting at the TGN, we reconstituted vesicle formation from Golgi/TGN-enriched membranes in a novel in vitro budding assay. Melanocytes were metabolically labelled followed by a 19°C temperature block to accumulate newly synthesized proteins in Golgi membranes, which were then enriched by subcellular fractionation and used as donor membranes for vesicle formation in vitro . The incorporation of the melanosomal proteins tyrosinase and tyrosinase-related protein 1 (TRP-1) as well as Lamp-1 and 46 kDa mannose-6-phosphate receptor (MPR46) into Golgi/TGN-derived vesicles was temperature, nucleotide, cytosol, ADP ribosylation factor 1 and adaptor dependent. We show that sorting of TRP-1 and MPR46 was AP-1 dependent, while budding of tyrosinase and Lamp-1 required AP-3. Depletion of clathrin inhibited sorting of all four cargo proteins, suggesting that AP-1 and AP-3 are involved in the formation of distinct types of clathrin-coated vesicles, each of which is characterized by the incorporation of specific cargo membrane proteins.  相似文献   

13.
The expression and localization of syntaxin isoforms 1A and 1B in adrenergic and noradrenergic chromaffin cells were examined by both immunoblot analysis and confocal immunofluorescence microscopy. Syntaxin 1A was found in higher levels in noradrenergic cells, whereas syntaxin 1B was similarly expressed in most noradrenergic and adrenergic cells. However, some heterogeneity was observed within each catecholaminergic phenotype. Although the majority of adrenergic cells appeared to express low levels of syntaxin 1A, about 7% was strongly stained for syntaxin 1A. A subpopulation of noradrenergic cells, about 17%, expressed greater levels of syntaxin 1B. Syntaxin 1B labeling showed a punctate appearance in the cytoplasm, whereas syntaxin 1A appeared predominantly localized to the plasma membrane. These data show differences in the exocytotic machinery of the two subtypes of chromaffin cells that may underlie some of the distinct characteristics of adrenaline and noradrenaline secretion.  相似文献   

14.
Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N‐terminal domain homologous to the crescent‐shaped membrane‐tubulating EFC/F‐BAR domains and a C‐terminal domain homologous to cargo‐binding μ homology domains (μHDs). In vitro and in vivo assays confirmed membrane‐tubulation activity for muniscin EFC/F‐BAR domains. The μHD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane‐tubulation activity that is important for regulating endocytosis.  相似文献   

15.
Summary Selective biotinylation of the apical or basolateral domains of confluent MDCK monolayers grown on polycarbonate filters with a water soluble biotin analog, sulfo-NHS-biotin, was employed to reveal strikingly distinct patterns of endogenous peripheral and integral membrane proteins. Peripheral proteins were found to be approximately fivefold more abundant with this procedure than integral membrane proteins, both on the apical and on the basolateral surface. The distinct apical and basal patterns were shown to depend upon the integrity of the monolayer; when the tight junctions were disrupted by preincubation in calcium-depleted medium, the patterns appeared practically indistinguishable. Two-dimensional gel electrophoresis demonstrated that only a very small percentage of the biotinylated proteins were found in similar amounts on both apical and basolateral domains. These results indicate that the sorting mechanisms that segregate apical and basolateral epithelial proteins are very strict. The simple procedure described here has clear advantages over other methods available to label apical and basal epithelial surface domains, namely, higher accessibility of the biotin probe to the basolateral membrane, possibility of purifying biotinylated proteins via immobilized streptavidin and minimal exposure of the researcher to isotopes. It should be very useful in characterizing the apical and basolateral protein compositions of other epithelial cells and in studies on the development of epithelial cell polarity.  相似文献   

16.
Background information. Within the endocytic pathway, the ESCRT (endosomal sorting complex required for transport) machinery is essential for the biogenesis of MVBs (multivesicular bodies). In yeast, ESCRTs are recruited at the endosomal membrane and are involved in cargo sorting into intralumenal vesicles of the MVBs. Results. In the present study, we characterize the ESCRT‐III protein CeVPS‐32 (Caenorhabditis elegans vacuolar protein sorting 32) and its interactions with CeVPS‐27, CeVPS‐23 and CeVPS‐4. In contrast with other CevpsE (class E vps) genes, depletion of Cevps‐32 is embryonic lethal with severe defects in the remodelling of epithelial cell shape during organogenesis. Furthermore, Cevps‐32 animals display an accumulation of enlarged early endosomes in epithelial cells and an accumulation of autophagosomes. The CeVPS‐32 protein is enriched in epithelial tissues and in residual bodies during spermatid maturation. We show that CeVPS‐32 and CeVPS‐27/Hrs (hepatocyte‐growth‐factor‐regulated tyrosine kinase substrate) are enriched in distinct subdomains at the endosomal membrane. CeVPS‐27‐positive subdomains are also enriched for the ESCRT‐I protein CeVPS‐23/TSG101 (tumour susceptibility gene 101). The formation of CeVPS‐27 subdomains is not affected by the depletion of CeVPS‐23, CeVPS‐32 or the ATPase CeVPS‐4. Conclusion. Our results suggest that the formation of membrane subdomains is essential for the maturation of endosomes.  相似文献   

17.
18.
The binding specificity of alpha7beta1 integrins for different laminin isoforms is defined by the X1 and X2 splice domains located in the beta-propeller domain of the alpha7 subunit. In order to gain insight into the mechanism of specific laminin-integrin interactions, we defined laminin-binding epitopes of the alpha7X1 and -X2 domains by single amino acid substitutions and domain swapping between X1 and X2. The interaction of mutated, recombinantly prepared alpha7X1beta1 and alpha7X2beta1 heterodimers with various laminin isoforms was studied by surface plasmon resonance and solid phase binding assays. The data show that distinct clusters of surface-exposed acidic residues located in different positions of the X1 and the X2 loops are responsible for the specific recognition of laminins. These residues are conserved between the respective X1 or X2 splice domains of the alpha7 chains of different species, some also in the corresponding X1/X2 splice domains of alpha6 integrin. Interestingly, ligand binding was also modulated by mutating surface-exposed hydrophobic residues (alpha7X1L205, alpha7X2Y208) at positions corresponding to the fibronectin binding synergy site in alpha5beta1 integrin. Mutations in X1 that affected binding to laminin-1 also affected binding to laminin-8 and -10, but not to the same extent, thus allowing conclusions on the specific role of individual surface epitopes in the selective recognition of laminin-1 versus laminins -8 and -10. The role of the identified epitopes was confirmed by molecular dynamics simulations of wild-type integrins and several inactivating mutations. The analysis of laminin isoform interactions with various X1/X2 chimaera lend further support to the key role of negative surface charges and pointed to an essential contribution of the N-terminal TARVEL sequence of the X1 domain for recognition of laminin-8 and -10. In conclusion, specific surface epitopes containing charged and hydrophobic residues are essential for ligand binding and define specific interactions with laminin isoforms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号