首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Influenza is a common respiratory virus and Staphylococcus aureus frequently causes secondary pneumonia during influenza infection, leading to increased morbidity and mortality. Influenza has been found to attenuate subsequent Type 17 immunity, enhancing susceptibility to secondary bacterial infections. IL-27 is known to inhibit Type 17 immunity, suggesting a potential critical role for IL-27 in viral and bacterial co-infection.

Methods

A murine model of influenza and Staphylococcus aureus infection was used to mimic human viral, bacterial co-infection. C57BL/6 wild-type, IL-27 receptor α knock-out, and IL-10 knock-out mice were infected with Influenza H1N1 (A/PR/8/34) or vehicle for 6 days followed by challenge with Staphylococcus aureus or vehicle for 24 hours. Lung inflammation, bacterial burden, gene expression, and cytokine production were determined.

Results

IL-27 receptor α knock-out mice challenged with influenza A had increased morbidity compared to controls, but no change in viral burden. IL-27 receptor α knock-out mice infected with influenza displayed significantly decreased IL-10 production compared to wild-type. IL-27 receptor α knock-out mice co-infected with influenza and S. aureus had improved bacterial clearance compared to wild-type controls. Importantly, there were significantly increased Type 17 responses and decreased IL-10 production in IL-27 receptor α knock-out mice. Dual infected IL-10−/− mice had significantly less bacterial burden compared to dual infected WT mice.

Conclusions

These data reveal that IL-27 regulates enhanced susceptibility to S. aureus pneumonia following influenza infection, potentially through the induction of IL-10 and suppression of IL-17.  相似文献   

3.
4.

Background and Aims

Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature.

Methods

An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants.

Key Results

Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants.

Conclusions

These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas.  相似文献   

5.
6.

Background and Aims

The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.

Methods

Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.

Key Results

The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.

Conclusions

Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.  相似文献   

7.
Bauer G  Speck T 《Annals of botany》2012,109(4):807-811

Background and Aims

The functions of plant latex have been discussed for a long time. Today, many studies support a defence mechanism as being its main function. A role as a self-healing mechanism was never attributed to the coagulation of latex. In this study we quantified the contribution of the coagulation of Ficus benjamina (weeping fig) latex to a restoration of the mechanical properties of the bark after external lesions.

Methods

Tensile tests of F. benjamina bark were conducted either immediately after injury or at various latency times after injury.

Key Results

A significant increase in the tensile strength of bark samples until 30 min after injury was found, and this effect could be attributed to the coagulation of plant latex alone. The tensile strength remains nearly constant until several hours or days after injury. Then, very probably due to other mechanisms such as cell growth and cell proliferation, the tensile strength begins to increase slightly again.

Conclusions

The coagulation of latex seals lesions and serves as a quick and effective pre-step of subsequent, more effective, long-lasting self-healing mechanisms such as cell growth and proliferation. Thus, a fast self-healing effect can be included in the list of functions of plant latex.  相似文献   

8.

Background

Human height is a complex trait with a strong genetic basis. Recently, a significant association between rare copy number variations (CNVs) and short stature has been identified, and candidate genes in these rare CNVs are being explored. This study aims to evaluate the association between mutations in ARID1B gene and short stature, both the syndromic and non-syndromic form.

Results

Based on a case-control study of whole genome chromosome microarray analysis (CMA), three overlapping CNVs were identified in patients with developmental disorders who exhibited short stature. ARID1B, a causal gene for Coffin Siris syndrome, is the only gene encompassed by all three CNVs. A following retrospective genotype-phenotype analysis based on a literature review confirmed that short stature is a frequent feature in those Coffin-Siris syndrome patients with ARID1B mutations. Mutation screening of ARID1B coding regions was further conducted in a cohort of 48 non-syndromic short stature patients,andfour novel missense variants including two de novo mutations were found.

Conclusion

These results suggest that haploinsufficient mutations of ARID1B are associated with syndromic short stature including Coffin-Siris syndrome and intellectual disability, while rare missense variants in ARID1B are associated with non-syndromic short stature. This study supports the notion that mutations in genes related to syndromic short stature may exert milder effect and contribute to short stature in the general population.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1898-1) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background and Aims

Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown.

Methods

Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China.

Key Results

Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production.

Conclusions

These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.  相似文献   

10.

Background and Aims

At least seven species of Agave, including A. parryi, were cultivated prehistorically in Arizona, serving as important sources of food and fibre. Many relict populations from ancient cultivation remain in the modern landscape, offering a unique opportunity to study pre-Columbian plant manipulation practices. This study examined genetic and morphological variation in six A. p. var. huachucensis populations of unknown origin to compare them with previous work on A. parryi populations of known origin, to infer their cultivation history and to determine whether artificial selection is evident in populations potentially managed by early agriculturalists.

Methods

Six A. p. var. huachucensis and 17 A. parryi populations were sampled, and morphometric, allozyme and microsatellite data were used to compare morphology and genetic structure in purportedly anthropogenic and wild populations, as well as in the two taxa. Analysis of molecular variance and Bayesian clustering were performed to partition variation associated with taxonomic identity and hypothesized evolutionary history, to highlight patterns of similarity among populations and to identify potential wild sources for the planting stock.

Key Results A

p. var. huachucensis and A. parryi populations differed significantly both morphologically and genetically. Like A. parryi, wild A. p. var. huachucensis populations were more genetically diverse than the inferred anthropogenic populations, with greater expected heterozygosity, percentage of polymorphic loci and number of alleles. Inferred anthropogenic populations exhibited many traits indicative of past active cultivation: greater morphological uniformity, fixed heterozygosity for several loci (non-existent in wild populations), fewer multilocus genotypes and strong differentiation among populations.

Conclusions

Where archaeological information is lacking, the genetic signature of many Agave populations in Arizona can be used to infer their evolutionary history and to identify potentially fruitful sites for archaeological investigation of ancient settlements and cultivation practices. The same approach can clearly be adopted for other species in similar situations.  相似文献   

11.

Background and Aims

The time at which plants are transferred to floral inductive conditions affects the onset of flowering and plant morphology, due to juvenility. Plants of Brunonia australis and Calandrinia sp. were used to investigate whether Australian native ephemeral species show a distinct juvenile phase that can be extended to increase vegetative growth and flowering.

Methods

The juvenile phase was quantified by transferring seedlings from less inductive (short day and 30/20°C) to inductive (vernalization or long day) conditions at six different plant ages ranging from 4 to 35 d after seed germination. An increase in days to first visible floral bud and leaf number were used to signify the end of juvenility.

Key Results

Brunonia australis was receptive to floral inductive long day conditions about 18–22 d after seed germination, whereas plants aged 4–35 d appeared vernalization sensitive. Overall, transferring plants of B. australis from short to long day conditions reduced the time to anthesis compared with vernalization or constant short day conditions. Calandrinia sp. showed a facultative requirement for vernalization and an insensitive phase was not detected. Floral bud and branch production increased favourably as plant age at time of transfer to inductive conditions increased. Younger plants showed the shortest crop production time.

Conclusions

Both species can perceive the vernalization floral stimulus from a very young age, whereas the photoperiodic stimulus is perceived by B. australis after a period of vegetative growth. However, extending the juvenile phase can promote foliage development and enhance flower production of both species.  相似文献   

12.
13.

Background

The proteins Sm1 and Sm2 from the biocontrol fungus Trichoderma virens belong to the cerato-platanin protein family. Members of this family are small, secreted proteins that are abundantly produced by filamentous fungi with all types of life-styles. Some species of the fungal genus Trichoderma are considered as biocontrol fungi because they are mycoparasites and are also able to directly interact with plants, thereby stimulating plant defense responses. It was previously shown that the cerato-platanin protein Sm1 from T. virens - and to a lesser extent its homologue Epl1 from Trichoderma atroviride - induce plant defense responses. The plant protection potential of other members of the cerato-platanin protein family in Trichoderma, however, has not yet been investigated.

Results

In order to analyze the function of the cerato-platanin protein Sm2, sm1 and sm2 knockout strains were generated and characterized. The effect of the lack of Sm1 and Sm2 in T. virens on inducing systemic resistance in maize seedlings, challenged with the plant pathogen Cochliobolus heterostrophus, was tested. These plant experiments were also performed with T. atroviride epl1 and epl2 knockout strains. In our plant-pathogen system T. virens was a more effective plant protectant than T. atroviride and the results with both Trichoderma species showed concordantly that the level of plant protection was more strongly reduced in plants treated with the sm2/epl2 knockout strains than with sm1/epl1 knockout strains.

Conclusions

Although the cerato-platanin genes sm1/epl1 are more abundantly expressed than sm2/epl2 during fungal growth, Sm2/Epl2 are, interestingly, more important than Sm1/Epl1 for the promotion of plant protection conferred by Trichoderma in the maize-C. heterostrophus pathosystem.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0333-0) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background and Aims

Functional–structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine''s architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine''s features: (a) plasticity of the vine''s architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth.

Methods

Using the L-system modelling platform, a functional–structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf.

Key Results

Several simulations were performed to illustrate the model''s potential to reproduce the major features of the vine''s behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon.

Conclusions

The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.  相似文献   

15.

Background

This study aimed to determine the seasonal changes of total antioxidant activity and phenolic compounds in samples taken from leaves (April, July, October) and stems (April, July, October, January) of some almond (Prunus amygdalus L.) varieties (Nonpareil, Ferragnes and Texas).

Results

It was indicated that antioxidant activity and phenolic compounds in leaves and stems of Nonpareil, Ferragnes and Texas showed seasonal differences. Antioxidant activity IC50 of these varieties reached the highest value in April for leaves whereas in October for stems. The highest level of total phenolic compounds was in January for stems while in October for leaves.

Conclusions

These results showed that total antioxidant activity and phenolics in leaves and stems of almond varieties changed according to season and plant organ.  相似文献   

16.

Background and Aims

Differences in competitive ability between the sexes of dioecious plants are expected as a result of allocation trade-offs associated with sex-differential reproductive costs. However, the available data on competitive ability in dioecious plants are scarce and contradictory. In this study sexual competition was evaluated using the dioecious plant Antennaria dioica in a common garden transplantation experiment.

Methods

Male and female plants were grown for 3 years either in isolation, or in competition with a plant of the same sex or the opposite sex. Flowering phenology, sexual and asexual reproduction, plant growth, nutrient content and arbuscular mycorrhizal colonization in the roots were assessed.

Key Results

Our results showed little evidence of sexual differences in competitive ability. Both sexes suffered similarly from competition, and competitive effects were manifested in some traits related to fitness but not in others. Survival was unaffected by competition, but competing plants reduced their vegetative growth and reproductive investment compared with non-competing plants. In addition, differences in sexual competitive ability were observed in relation to flowering frequency, an important life history trait not reported in previous studies.

Conclusions

The findings indicate that female and male A. dioica plants possess similar intersexual competitive abilities which may be related to the similar costs of reproduction between sexes in this species. Nevertheless, intrasexual competition is higher in females, giving support for asymmetric niche segregation between the sexes.  相似文献   

17.
18.
19.
20.

Background and Aims

The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete–plant interaction at the tissue and cellular levels.

Methods

Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection.

Key Results

Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin.

Conclusions

Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant–microbe interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号