首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood flukes of the family Spirorchiidae are significant pathogens of both free-ranging and captive marine turtles. Despite a significant proportion of marine turtle mortality being attributable to spirorchiid infections, details of their life cycles remain almost entirely unknown. Here we report on the molecular elucidation of the complete life cycle of a marine spirorchiid, identified as Amphiorchis sp., infecting vermetid gastropods and captive hatched neonate Caretta caretta in the Oceanogràfic Aquarium, in Valencia, Spain. Specimens of a vermetid gastropod, Thylaeodus cf. rugulosus (Monterosato, 1878), collected from the aquarium filtration system housing diseased C. caretta, were infected with sporocysts and cercariae consistent with the family Spirorchiidae. We generated rDNA sequence data [internal transcribed spacer 2 (ITS2) and partial 28S rDNA] from infections from the vermetid which were identical to sequences generated from eggs from the serosa of the intestine of neonate C. caretta, and an adult spirorchiid from the liver of a C. caretta from Florida, USA. Given the reliability of these markers in the delineation of trematode species, we consider all three stages to represent the same species and tentatively identify it as a species of Amphiorchis Price, 1934. The source of infection at the Oceanogràfic Foundation Rehabilitation Centre, Valencia, Spain, is inferred to be an adult C. caretta from the western Mediterranean being rehabilitated in the same facility. Phylogenetic analysis suggests that this Amphiorchis sp. is closely related to other spirorchiids of marine turtles (species of Carettacola Manter & Larson, 1950, Hapalotrema Looss, 1899 and Learedius Price, 1934). We discuss implications of the present findings for the control of spirorchiidiasis in captivity, for the better understanding of epidemiology in wild individuals, and the elucidation of further life cycles.  相似文献   

2.
The trematode superfamily Monorchioidea comprises three families of teleost parasites: the Monorchiidae Odhner, 1911, Lissorchiidae Magath, 1917, and Deropristidae Cable & Hunninen, 1942. All presently known lissorchiid and deropristid life cycles have gastropods as first intermediate hosts, whereas those of monorchiids involve bivalves. Here, we report an unexpected intermediate host for monorchiids; two species of Hurleytrematoides Yamaguti, 1954 use gastropods as first intermediate hosts. Sporocysts and cercariae were found infecting two species of the family Vermetidae, highly specialised sessile gastropods that form calcareous tubes, from two locations off the coast of Queensland, Australia. These intramolluscan infections broadly corresponded morphologically to those of known monorchiids in that the cercariae have a spinous tegument, oral and ventral suckers, a simple tail and distinct eye-spots. Given the simplified morphology of intramolluscan infections, genetic data provided a definitive identification. ITS2 rDNA and cox1 mtDNA sequence data from the gastropod infections were identical to two species of Hurleytrematoides, parasites of butterflyfishes (Chaetodontidae); Hurleytrematoides loi McNamara & Cribb, 2011 from Moreton Bay (south-eastern Queensland) and Heron Island (southern Great Barrier Reef) and Hurleytrematoides morandi McNamara & Cribb, 2011 from Heron Island. Notably, species of Hurleytrematoides are positioned relatively basal in the phylogeny of the Monorchiidae and are a sister lineage to that of species known to infect bivalves. Thus, the most parsimonious evolutionary hypothesis to explain infection of gastropods by these monorchiids is that basal monorchiids (in our analyses, species of Cableia Sogandares-Bernal, 1959, Helicometroides Yamaguti, 1934 and Hurleytrematoides) will all prove to infect gastropods, suggesting a single host switching event into bivalves for more derived monorchiids (17 other genera in our phylogenetic analyses). A less parsimonious hypothesis is that the infection of vermetids will prove to be restricted to species of Hurleytrematoides, as an isolated secondary recolonisation of gastropods from a bivalve-infecting lineage. Regardless of how their use arose, vermetids represent a dramatic host jump relative to the rest of the Monorchiidae, one potentially enabled by their specialised feeding biology.  相似文献   

3.
Life cycles of spirorchiids that infect the vascular system of turtles are poorly understood. Few life cycles of these blood flukes have been elucidated and all intermediate hosts reported are gastropods (Mollusca), regardless of whether the definitive host is a freshwater or a marine turtle. During a recent survey of blood fluke larvae in polychaetes on the coast of South Carolina, USA, spirorchiid-like cercariae were found to infect the polychaetes Amphitrite ornata (Terebellidae) and Enoplobranchus sanguineus (Polycirridae). Cercariae were large, furcate, with a ventral acetabulum, but no eyespots were observed. Partial sequences of D1–D2 domains of the large ribosomal subunit, the internal transcribed spacer 2, and the mitochondrial cytochrome oxidase 1 genes allowed the identification of sporocysts and cercariae as belonging to two unidentified Neospirorchis species reported from the green turtle, Chelonia mydas, in Florida: Neospirorchis sp. (Neogen 13) in A. ornata and Neospirorchis sp. (Neogen 14) in E. sanguineus. Phylogenetic analysis suggests that infection of annelids by blood flukes evolved separately in aporocotylids and spirorchiids. Our results support the contention that the Spirorchiidae is not a valid family and suggest that Neospirorchis is a monophyletic clade within the paraphyletic Spirorchiidae. Since specificity of spirorchiids for their intermediate hosts is broader than it was thus far assumed, surveys of annelids in turtle habitats are necessary to further our understanding of the life history of these pathogenic parasites.  相似文献   

4.
The family Aporocotylidae is recognized as having the widest intermediate host usage in the Digenea. Currently, intermediate host groups are clearly correlated with definitive host groups; all known life cycles of marine teleost-infecting aporocotylids involve polychaetes, those of freshwater teleost-infecting aporocotylids involve gastropods, and those of chondrichthyan-infecting aporocotylids involve bivalves. Here we report the life cycle for a marine elopomorph-infecting species, Elopicola bristowi Orélis-Ribeiro & Bullard in Orélis-Ribeiro, Halanych, Dang, Bakenhaster, Arias & Bullard, 2017, as infecting a bivalve, Anadara trapezia (Deshayes) (Arcidae), as the intermediate host in Moreton Bay, Queensland, Australia. The cercaria of E. bristowi has a prominent finfold, distinct anterior and posterior widenings of the oesophagus, a tail with symmetrical furcae with finfolds, and develops in elongate to oval sporocysts. We also report molecular data for an unmatched aporocotylid cercaria from another bivalve, Megapitaria squalida (G. B. Sowerby I) (Veneridae), from the Gulf of California, Mexico, and six unmatched cercariae from a gastropod, Posticobia brazieri (E. A. Smith) (Tateidae), from freshwater systems of south-east Queensland, Australia. Phylogenetic analyses demonstrate the presence of six strongly-supported lineages within the Aporocotylidae, including one of elopomorph-infecting genera, Elopicola Bullard, 2014 and Paracardicoloides Martin, 1974, now shown to use both gastropods and bivalves as intermediate hosts. Of a likely 14 aporocotylid species reported from bivalves, six are now genetically characterised. The cercarial morphology of these six species demonstrates a clear distinction between those that infect chondrichthyans and those that infect elopomorphs; chondrichthyan-infecting aporocotylids have cercariae with asymmetrical furcae that lack finfolds and develop in spherical sporocysts whereas those of elopomorph-infecting aporocotylids have symmetrical furcae with finfolds and develop in elongate sporocysts. This morphological correlation allows predictions of the host-based lineage to which the unsequenced species belong. The Aporocotylidae is proving exceptional in is propensity for major switches in intermediate host use, with the most parsimonious interpretation of intermediate host distribution implying a minimum of three host switches within the family.  相似文献   

5.
Coral reefs are one of the most diverse systems on the planet; yet, only a small fraction of coral reef species have attracted scientific study. Here, we document strong deleterious effects of an often overlooked species—the vermetid gastropod, Dendropoma maximum—on growth and survival of reef-building corals. Our surveys of vermetids on Moorea (French Polynesia) revealed a negative correlation between the density of vermetids and the per cent cover of live coral. Furthermore, the incidence of flattened coral growth forms was associated with the presence of vermetids. We transplanted and followed the fates of focal colonies of four species of corals on natural reefs where we also manipulated presence/absence of vermetids. Vermetids reduced skeletal growth of focal corals by up to 81 per cent and survival by up to 52 per cent. Susceptibility to vermetids varied among coral species, suggesting that vermetids could shift coral community composition. Our work highlights the potential importance of a poorly studied gastropod to coral dynamics.  相似文献   

6.
Coral reefs are often termed underwater wonderlands due to the presence of an incredible biodiversity including numerous invertebrates and vertebrates. Among the dense population of benthic and bottom-dwelling inhabitants of the reef, many significant species remain hidden or neglected by researchers. One such example is the vermetids, a unique group of marine gastropods. The present study attempts for the first time to assess the density and identify preferred reef substrates in the Gulf of Kachchh, state of Gujarat, on the western coast of India. A total of three species of the family Vermetidae were recorded during the study and their substrate preferences identified.  相似文献   

7.
Along the southern California coast the vermetid gastropod Serpulorbis squamigerus (Carpenter) frequently recruits onto encrusting cheilostome bryozoans. On experimental substrates 93% of 599 individuals observed recruited onto either the five dominant cheilostome species or the shells of resident juvenile Serpulorbis. Serpulorbis recruitment also varied significantly among the dominant bryozoans. These recruitment patterns were found to result from differential postsettlement mortality as well as from selective settlement of larvae. The longevity of vermetids was also found to differ among substratum types, principally from an increase in the probability of surviving to 3 months of age on bryozoan substrates. No positive or negative effects of this relationship could be found for the bryozoans. By differentially recruiting onto bryozoans the vermetid: (1) aggregated for reproduction while avoiding competition for food with adult conspecifics; and (2) decreased juvenile mortality possibly by an avoidance of competition or by being camouflaged from predators. This relationship was judged to be facultative commensalism.  相似文献   

8.
This paper reports four fatal cases of metastrongylid nematode Angiostrongylus dujardini infection observed in a Saguinus oedipus and a Callimico goeldii monkey and in two suricates (Suricata suricatta). All animals were kept in captivity in a zoo of central Italy. The two monkeys died with no premonitory signs, while the two-month-old suricates showed malaise, anorexia and tachypnea for a few days prior to death. Cardiomegaly and/or granulomatous pneumonia were the major anatomo-pathological findings. Inflammatory lesions were observed in the liver, heart and kidney of the suricates at histology. A. dujardini diagnosis was confirmed through both morphological identification of adult worms recovered at necropsy and molecular characterization of larvae in tissue samples.Callitrichidae and suricates are active predators and maintain their hunting behaviour in captivity and it is then likely that they were exposed to infection by preying on parasitized gastropods, intermediate hosts of A. dujardini, entering zoo enclosures from the surrounding environment. This is the first report of A. dujardini in Italy and in S. suricatta.  相似文献   

9.
10.
The first first-intermediate host for a species of Didymozoidae (Trematoda: Hemiuroidea), a bivalve of the family Arcidae, is identified using multi-loci molecular data. First intermediate, (likely) third intermediate, and adult stages of a new didymozoid taxon (Saccularina magnacetabula n. gen. n. sp.) from Moreton Bay, Queensland, Australia were collected from the Sydney cockle Anadara trapezia (Deshayes) (Arcoidea: Arcidae), Sillago sp. (Sillaginidae) and Elops hawaiensis Regan (Elopiformes: Elopidae), respectively, and genetically matched. Infections in A. trapezia were present as sporocysts and cystophorous cercariae, and infected tissue at the base of the gills. Morphologically, S. magnacetabula is distinctive relative to all other didymozoids in the combination of hermaphroditism, mate-pairing, filiform body shape, the presence of a ventral sucker, a single testis, and a saccular excretory vesicle at the posterior extremity. Molecular sequence data were generated for S. magnacetabula and 42 other putative didymozoid species to explore relationships within the Didymozoidae and Hemiuroidea. In molecular phylogenetic analyses of the 28S rDNA region, the new genus forms a clade with an undescribed taxon from the redthroat emperor, Lethrinus miniatus (Bloch & Schneider) (Perciformes: Lethrinidae), from the Great Barrier Reef, and another uncharacterised taxon from E. hawaiensis. This clade is sister to a moderately well-supported clade comprising all other didymozoid species for which sequences are available, including representatives of five of the six presently recognised subfamilies. The infection of a bivalve by a didymozoid is discussed in the context of the overwhelming use of gastropod molluscs as first intermediate hosts by the Hemiuroidea.  相似文献   

11.
Harbour porpoises (Phocoena phocoena) and harbour seals (Phoca vitulina) from German waters are infected by six species of lungworms (Metastrongyloidea). These nematodes parasitise the respiratory tract, are pathogenic and often cause secondary bacterial infections. In spite of their clinical and epidemiological significance, the life cycle and biology of lungworms in the marine environment is still largely unknown. Regions of ribosomal DNA (ITS-2) of all lungworms parasitising harbour porpoises and harbour seals in German waters were sequenced to characterise and compare the different species. The phylogenetic relationship among the lungworm species was analysed by means of their ITS-2 nucleotide sequences and the species-specific traits of the ITS-2 were used to screen wild fish as possible intermediate hosts for larval lungworms. Molecular markers were developed to identify larval nematodes via in-situ hybridisation of tissues of harbour porpoise and harbour seal prey fish. Potential wild intermediate fish hosts from the North Sea were dissected and found to harbour larval nematodes. Histological examination and in-situ hybridisation of tissue samples from these fish showed lungworm larvae within the intestinal wall. Based on larval ITS-2 nucleotide sequences, larval nematodes were identified as Pseudalius inflexus and Parafilaroides gymnurus. Turbot (Psetta maxima) bred and raised in captivity were experimentally infected with live L1s of Otostrongylus circumlitus and ensheathed larvae were recovered from the gastrointestinal tract of turbot and identified using molecular tools. Our results show that fish intermediate hosts play a role in the transmission of metastrongyloid nematodes of harbour porpoises and harbour seals.  相似文献   

12.
Vermetidae are a small family of warm-water sessile gastropods capable of building upright tubes (feeding-tubes) to take advantage of the water flow. Laboratory and field experiments carried out on some Mediterranean species ( Vermetus triquetrus, Vermetus granulatus and Serpulorbis arenaria ) suggest that these structures function as exploratory tubes built not only to receive a better water flow, but mainly to avoid obstacles. In fact, vermetids experimentally exposed in situ to different hydrodynamic conditions do not produce them, but do so in the presence of an obstacle, such as thalli during the massive spring algal growth. This strategy allows them to compete for a virtual space, not directly occupied by the vermetid itself but necessary to spread its mucous net. This interpretation may improve the inference of paleo-environmental events from shell morphology. When building a feeding-tube, vermetids first cut off a portion of the shell on the side towards which they prepare to turn, using their radula, and then produce a new tube formed by short segments, at different angles, till they have reached the desired direction. This process is confirmed by the presence of scars on the shell, composed by a succession of lamellae. The regular distribution of these scars on fossil Petaloconchus intortus , which lived in soft substrates, may be interpreted as a response to periodical anoxic crises or an increase in the sedimentation rates. Their great morphological plasticity makes vermetids close to colonial or modular animals. Thanks to their capability of expressing more than one growth-form, and of re-moulding their shell, they successfully compete for substrate space and are key-stone species in fringe habitats.  相似文献   

13.
Aktipis, S. W., Boehm, E. & Giribet, G. (2010). Another step towards understanding the slit‐limpets (Fissurellidae, Fissurelloidea, Vetigastropoda, Gastropoda): a combined five‐gene molecular phylogeny. —Zoologica Scripta, 40, 238–259. Fissurellids, commonly known as slit or keyhole limpets, are limpet‐shaped gastropods that typically possess a hole, slit or notch in their bilaterally symmetrical shells and usually occur on rocky marine substrates. Competing classifications for Fissurellidae have been circumscribed using various morphological characters such as radular, shell and mantle features; two to five different subfamilies have been recognized. Although fissurellid species are frequently included in larger vetigastropod phylogenies, relatively few phylogenetic studies of the group have been performed. This study presents a phylogenetic investigation of the relationships amongst slit‐limpets in the vetigastropod superfamily Fissurelloidea, representing the first molecular phylogeny of this clade. In this study, the monophyly of Fissurelloidea and Fissurellidae varied depending on the analytical method used, but clades compatible with the subfamilies Diodorinae and Fissurellinae were recovered with high bootstrap support in all analyses. Species traditionally classified in Emarginulinae formed two groups identified in this study as Hemitominae (Puncturella, Cranopsis and Hemitoma) and Emarginulinae sensu stricto (Emarginula, Montfortula, Tugali, Scutus and Nannoscutum), but Hemitominae was only monophyletic in the maximum likelihood analysis. The results of this study contradict traditional fissurellid classifications as well as theories about the evolution of key fissurellid shell characters. The placement of Puncturella, Cranopsis and Hemitoma sister to all remaining fissurellids suggests that the presence of an anteriorly placed foramen or notch is plesiomorphic, and that an anterior notch or slit evolved multiple times in Fissurellidae.  相似文献   

14.
A rich fauna of digenetic trematodes has been documented from the Great Barrier Reef (GBR), yet little is known of the complex life-cycles of these parasites which occur in this diverse marine ecosystem. At Heron Island, a small coral cay at the southern end of the GBR, the intertidal marine gastropod Clypeomorus batillariaeformis Habe & Kusage (Cerithiidae) is especially abundant. This gastropod serves as an intermediate host for 12 trematode species utilising both fish and avian definitive hosts. However, 11 of these species have been characterised solely with morphological data. Between 2015 and 2018 we collected 4870C. batillariaeformis from Heron Island to recollect these species with the goal of using molecular data to resolve their phylogenetic placement. We found eight of the 12 previously known species and two new forms, bringing the total number of digenean species known to parasitise C. batillariaeformis to 14. The families of this trematode community now include the Atractotrematidae Yamaguti, 1939, Bivesiculidae Yamaguti, 1934, Cyathocotylidae Mühling, 1898, Hemiuridae Looss, 1899, Heterophyidae Leiper, 1909, Himasthlidae Odhner, 1910, Microphallidae Ward, 1901, and Renicolidae Dollfus, 1939. Molecular data (ITS and 28S rDNA) were generated for all trematode species, and the phylogenetic position of each species was determined. The digenean community parasitising C. batillariaeformis includes several common species, as well as multiple species which are uncommon to rare. Although most of those trematodes in the community which exploit fishes as definitive hosts have remained common, the composition of those which utilise birds appears to have shifted over time.  相似文献   

15.
Four types of tetraphyllidean larvae infect cetaceans worldwide: two plerocercoids differing in size, ‘small’ (SP) and ‘large’ (LP), and two merocercoids referred to as Phyllobothrium delphini and Monorygma grimaldii. The latter merocercoid larvae parasitize marine mammals exclusively and exhibit a specialised cystic structure. Adult stages are unknown for any of the larvae and thus the role of cetaceans in the life cycle of these species has been a long-standing problem. The SP and LP forms are thought to be earlier stages of P. delphini and M. grimaldii that are presumed to infect large pelagic sharks that feed on cetaceans. A molecular analysis of the D2 variable region of the large subunit ribosomal DNA gene based on several individuals of each larval type collected from three Mediterranean species of cetaceans showed consistent and unique molecular signatures for each type regardless of host species or site of infection. The degree of divergence suggested that LP, P. delphini and M. grimaldii larvae may represent separate species, whereas SP may be conspecific with M. grimaldii. In all host species, individuals of SP accumulated in the gut areas in which the lymphoid tissue was especially developed. We suggest therefore that these larvae use the lymphatic system to migrate to the abdominal peritoneum and mesenteries where they develop into forms recognizable as M. grimaldii. The plerocercoid stage of P. delphini remains unknown. In a partial phylogenetic tree of the Tetraphyllidea, all larvae formed a clade that included a representative of the genus Clistobothrium, some species of which parasitize sharks such as the great white which is known to feed on cetaceans. A bibliographic examination of tetraphyllidean infections in marine mammals indicated that these larvae are acquired mostly offshore. In summary, the evidence suggests that cetaceans play a significant role in the life cycle of these larvae. In addition, it seems clear that cetaceans act as natural intermediate hosts for P. delphini and M. grimaldii, as within these hosts they undergo development from the plerocercoid stage to the merocercoid stage. Because tetraphyllidean species use fish, cephalopods and other marine invertebrates as intermediate hosts, the inclusion of cetaceans in the life cycle would have facilitated their transmission to apex predators such as the large, lamnid sharks. The biological significance of infections of LP in cetaceans is unclear, but infections do not seem to be accidental as such larvae show high prevalence and abundance as well as a high degree of site specificity, particularly in the anal crypts and bile ducts.  相似文献   

16.
Vermetid gastropods have the potential to reduce foraging by herbivorous fishes on algae on coral reefs because they produce mucous nets that cover the surfaces of coral skeletons, potentially inhibiting foraging by fishes. We assessed this possibility using both observational and experimental approaches in Moorea, French Polynesia. Foraging rates of herbivorous fishes (total number of bites by all species per minute) were recorded in plots that varied naturally in the cover of vermetid mucous nets. This study, done at six sites, revealed that foraging on algal turf declined with increasing cover of vermetid mucous nets, ranging from ~2 to 22 bites m?2 min?1 at 0 % coverage to 0–5 bites m?2 min?1 at 100 % coverage. The magnitude of this effect of vermetid nets varied among microhabitats (high, mid, and low bommies) and sites, presumably due to variation in the intensity of herbivory. Experimental removal of vermetid mucous nets from plots more than doubled the foraging intensity on turf algae relative to when vermetid nets were present at high (≥70 %) cover. Our results indicate that algal turf on coral reefs may benefit from associational refuge from grazing provided by vermetid gastropods, which might in turn harm corals via increased competition with algal turf.  相似文献   

17.
18.
The fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a severe zoonotic disease that may be fatal if untreated. A broad spectrum of mammalian species may be accidentally infected even in captivity. In April 2011, liver lesions due to E. multilocularis were observed during the necropsy of a captive-born nutria (Myocastor coypus) in a French wildlife park, leading to initiation of a study to survey the parasite's presence in the park. A comparable environmental contamination with fox's feces infected by E. multilocularis was reported inside (17.8%) and outside (20.6%) the park. E. multilocularis worms were found in the intestines of three of the five roaming foxes shot in the park. Coprological analyses of potential definitive hosts in captivity (fox, lynx, wildcat, genet, wolf, bear and raccoon) revealed infection in one Eurasian wolf. Voles trapped inside the park also had a high prevalence of 5.3%. After diagnosis of alveolar echinococcosis in a Lemur catta during necropsy, four other cases in L. catta were detected by a combination of ultrasound and serology. These animals were treated twice daily with albendazole. The systematic massive metacestode development and numerous protoscoleces in L. catta confirmed their particular sensitivity to E. multilocularis infection. The autochthonous origin of the infection in all the captive animals infected was genetically confirmed by EmsB microsatellite analysis. Preventive measures were implemented to avoid the presence of roaming foxes, contact with potential definitive hosts and contaminated food sources for potential intermediate hosts.  相似文献   

19.
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.  相似文献   

20.
Gregarines are a diverse group of apicomplexan parasites with a conspicuous extracellular feeding stage, called a “trophozoite”, that infects the intestines and other body cavities of invertebrate hosts. Although the morphology of trophozoites is very diverse in gregarines as a whole, high degrees of intraspecific variation combined with relatively low degrees of interspecific variation make the delimitation of different species based on trophozoite morphology observed with light microscopy difficult. The coupling of molecular phylogenetic data with comparative morphology has shed considerable light onto the boundaries and interrelationships of different gregarine species. In this study, we isolated a novel marine gregarine from the hepatic region of a Pacific representative of the hemichordate Glossobalanus minutus, and report the first ultrastructural and molecular data from any gregarine infecting this distinctive group of hosts. Molecular phylogenetic analyses of an SSU rDNA sequence derived from two single‐cell isolates of this marine gregarine demonstrated a strong and unexpected affiliation with a clade of terrestrial gregarines (e.g. Gregarina). This molecular phylogenetic data combined with a comparison of the morphological features in previous reports of gregarines collected from Atlantic representatives of G. minutus justified the establishment of a new binomial for the new isolate, namely Caliculium glossobalani n. gen. et sp. The molecular phylogenetic analyses demonstrated a clade of terrestrial gregarines associated with a sequence acquired from a marine species, which suggest that different groups of terrestrial/freshwater gregarines evolved independently from marine ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号