首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage populations in an activated-sludge sewage treatment plant were enumerated. A newly developed assay for quantitation of total phages, employing direct electron microscopic counts, was used in conjunction with the plaque assay. The total concentration of phages was significantly higher in reactor mixed liquor and effluent than in influent sewage, indicating a net production of phages within the reactor. Maximum total phage concentrations in the fluid phase of sewage, activated-sludge mixed liquor, and reactor effluent were 2.2 × 107, 9.5 × 107, and 8.4 × 107/ml, respectively. Conditions were optimized for isolation of predominant heterotrophic aerobic bacteria from sewage and mixed liquor. Blending at ice water temperatures was superior to ultrasound or enzyme treatments for maximum release of viable bacteria from microbial floc. A solidified extract of mixed liquor was superior to standard media for cultivating maximum numbers of heterotrophic bacteria. The highest culture counts for sewage and mixed liquor were 1.4 × 107 and 1.3 × 109/ml, respectively, which represented only 3 and 6.8% of the total microscopic cell counts. Only 3 out of 48 dominant bacterial isolates from either mixed liquor or sewage were hosts for phages present in the system. The sum of phage populations infecting these three hosts accounted for, at best, 3.8% (sewage) and 0.2% (mixed liquor) of the total number of phages present. Generally, specific phage titers were lower in mixed liquor than in sewage, indicating that these hosts were not responsible for the net production of phages in the reactor. This study emphasizes the limitations of the plaque assay for ecological studies of phages, and it suggests that bacteria responsible for phage production in activated-sludge mixed liquor are either minor components of the heterotrophic population, floc-producing strains, or members of other physiological groups.  相似文献   

2.
The effect of starch addition on the microbial composition and the biological conversion was investigated using two upflow anaerobic sludge bracket (UASB) reactors treating methanolic wastewater: one reactor was operated with starch addition, and another reactor was operated without starch addition. Approximately 300 days of operation were performed at 30 kg COD/m3/d, and then, the organic load of the reactors was gradually increased to 120 kg COD/m3/d. Successful operation was achieved at 30 kg COD/m3/d in both reactors; however, the methanol-fed reactor did not perform well at 120 kg COD/m3/d while the methanol-starch-fed reactor did. The granule analysis revealed the granule developed further only in the methanol-starch-fed reactor. The results of the microbial community analysis revealed more Methanosaeta cells were present in the methanol-starch-fed reactor, suggesting the degradation of starch produced acetate as an intermediate, which stimulated the growth of Methanosaeta cells responsible for the extension of granules.  相似文献   

3.
The bacterial population of a high-rate, anaerobic, fixed-bed loop reactor treating sulfite evaporator condensate from the pulp industry was studied over a 14-month period. This period was divided into seven cycles that included a startup at the beginning of each cycle. Some 82% of the total biomass was immobilized on and between the porous glass rings filling the reactor. The range of the total number of microorganisms in these biofilms was 2 × 109 to 7 × 109 cells per ml. Enumeration and characterization by microbiological methods and by phase-contrast, epifluorescence, and electron microscopy showed that the samples consisted mainly of the following methanogens: a Methanobacterium sp., a Methanosarcina sp., a Methanobrevibacter sp., and a Methanothrix sp., as well as furfural-degrading sulfate-reducing bacteria resembling Desulfovibrio furfuralis. Viable counts of hydrogenotrophic methanogens were relatively stable (mostly within the range of 3.2 × 108 to 7.5 × 108 cells per ml), but Methanobrevibacter cells increased from <5 to 30% of the total hydrogenotrophic count after transfer of the fixed bed into a second reactor vessel. Acetotrophic methanogens reached their highest numbers of 1.3 × 108 to 2.6 × 108 cells per ml in the last fermentation cycles. They showed a morphological shift from sarcinalike packets in early samples to single coccoid forms in later phases of the fermentation. Furfural-degrading sulfate reducers reached counts of 1 × 107 to 5.8 × 107 cells per ml. The distribution of the chief metabolic groups between free fluid and biofilms was analyzed in the fifth fermentation cycle: 4.5 times more furfural degraders were found in the free fluid than in the biofilms. In contrast, 5.8 times more acetotrophic and 16.6 times more hydrogenotrophic methanogens were found in the biofilms than in the free liquid. The data concerning time shifts of morphotypes among the trophic groups of methanogens corroborated the trends observed by using immunological assays on the same samples.  相似文献   

4.
Anoxic sediments from Rotsee (Switzerland) were analyzed for the presence and diversity of methanogens by using molecular tools and for methanogenic activity by using radiotracer techniques, in addition to the measurement of chemical profiles. After PCR-assisted sequence retrieval of the 16S rRNA genes (16S rDNA) from the anoxic sediment of Rotsee, cloning, and sequencing, a phylogenetic analysis identified two clusters of sequences and four separated clones. The sequences in cluster 1 grouped with those of Methanosaeta spp., whereas the sequences in cluster 2 comprised the methanogenic endosymbiont of Plagiopyla nasuta. Discriminative oligonucleotide probes were constructed against both clusters and two of the separated clones. These probes were used subsequently for the analysis of indigenous methanogens in a core of the sediment, in addition to domain-specific probes against members of the domains Bacteria and Archaea and the fluorescent stain 4′,6-diamidino-2-phenylindole (DAPI), by fluorescent in situ hybridization. After DAPI staining, the highest microbial density was obtained in the upper sediment layer; this density decreased with depth from (1.01 ± 0.25) × 1010 to (2.62 ± 0.58) × 1010 cells per g of sediment (dry weight). This zone corresponded to that of highest metabolic activity, as indicated by the ammonia, alkalinity, and pH profiles, whereas the methane profile was constant. Probes Eub338 and Arch915 detected on average 16 and 6% of the DAPI-stained cells as members of the domains Bacteria and Archaea, respectively. Probe Rotcl1 identified on average 4% of the DAPI-stained cells as Methanosaeta spp., which were present throughout the whole core. In contrast, probe Rotcl2 identified only 0.7% of the DAPI-stained cells as relatives of the methanogenic endosymbiont of P. nasuta, which was present exclusively in the upper 2 cm of the sediment. Probes Rotp13 and Rotp17 did not detect any cells. The spatial distribution of the two methanogenic populations corresponded well to the methane production rates determined by incubation with either [14C]acetate or [14C]bicarbonate. Methanogenesis from acetate accounted for almost all of the total methane production, which concurs with the predominance of acetoclastic Methanosaeta spp. that represented on average 91% of the archaeal population. Significant hydrogenotrophic methanogenesis was found only in the organically enriched upper 2 cm of the sediment, where the probably hydrogenotrophic relatives of the methanogenic endosymbiont of P. nasuta, accounting on average for 7% of the archaeal population, were also detected.  相似文献   

5.
A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 × 10−1 and 1.14 × 104 cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 ± 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (≥98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.  相似文献   

6.
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce''s disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.  相似文献   

7.
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.  相似文献   

8.
Abundance and Diversity of Viruses in Six Delaware Soils   总被引:9,自引:3,他引:6       下载免费PDF全文
The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coastal plain forest soils, and two piedmont forest soils. Viral abundance was measured using epifluorescence microscopy, while viral diversity was assessed from morphological data obtained through transmission electron microscopy. Extracted soil virus communities were dominated by bacteriophages that demonstrated a wide range of capsid diameters (20 nm to 160 nm) and morphologies, including filamentous forms and phages with elongated capsids. The reciprocal Simpson's index suggests that forest soils harbor more diverse assemblages of viruses, particularly in terms of morphological distribution. Repeated extractions of virus-like particles (VLPs) from soils indicated that the initial round of extraction removes approximately 70% of extractable viruses. Higher VLP abundances were observed in forest soils (1.31 × 109 to 4.17 × 109 g−1 dry weight) than in agricultural soils (8.7 × 108 to 1.1 × 109 g−1 dry weight). Soil VLP abundance was significantly correlated to moisture content (r = 0.988) but not to soil texture. Land use (agricultural or forested) was significantly correlated to both bacterial (r = 0.885) and viral (r = 0.812) abundances, as were soil organic matter and water content. Thus, land use is a significant factor influencing viral abundance and diversity in soils.  相似文献   

9.
Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10−9, with a Poisson confidence interval of 4.1×10−9 − 9.5×10−9, per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10−11, with a Poisson confidence interval ranging from 7.4×10−13 to 1.6×10−10, is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.  相似文献   

10.
This article reports on high-rate nitrification at low pH in biofilm and suspended-biomass reactors by known chemolithotrophic bacteria. In the biofilm reactor, at low pH (4.3 ± 0.1) and low bulk ammonium concentrations (9.3 ± 3.3 mg·liter−1), a very high nitrification rate of 5.6 g of N oxidized·liter−1·day−1 was achieved. The specific nitrification rate (0.55 g of N·g of biomass−1·day−1) was similar to values reported for nitrifying reactors at optimal pH. In the suspended-biomass reactor, the average pH was significantly lower than that in the biofilm reactor (pH 3.8 ± 0.3), and values as low as pH 3.2 were found. In addition, measurements in the suspended-biomass reactor, using isotope-labeled ammonium (15N), showed that in spite of the very low pH, biomass growth occurred with a yield of 0.1 g of biomass·g of N oxidized−1. Fluorescence in situ hybridization using existing rRNA-targeted oligonucleotide probes showed that the nitrifying bacteria were from the monophyletic genus Nitrosomonas, suggesting that autotrophic nitrification at low pH is more widespread than previously thought. The results presented in this paper clearly show that autotrophic nitrifying bacteria have the ability to nitrify at a high rate at low pH and in the presence of only a negligible free ammonia concentration, suggesting the presence of an efficient ammonium uptake system and the means to cope with low pH.  相似文献   

11.
The rates of cellulose breakdown, composition of detrital microflora, and density of bacterial populations were determined in the epilimnetic sediments and water columns of two poorly buffered, oligotrophic, Canadian Shield lakes having mean surficial pHs of 4.6 (Bat Lake) and 6.6 (Harp Lake). The decomposition rate was significantly lower in oxic sediment of the acidified lake than of the circumneutral lake, but water column rates were almost identical in the two lakes. These results are explained in terms of the groups of cellulolytic microorganisms which were observed by phase-contrast microscopy as being active at the different sites: fungi in Bat Lake water and Cytophaga-like bacteria in the water and sediment of Harp Lake. Cytophaga-like bacteria were also the main decomposers in Bat Lake sediment, but their activity was restricted at porewater pHs of <5.0. Acridine orange direct counts of bacteria in the top centimeter of sediment ranged from 3.7 × 108 to 1.0 × 109 per g, and counts in planktonic water samples ranged from 4.9 × 105 to 1.2 × 106 per ml. Bacterial densities at most sites decreased significantly (P < 0.001) from August to late October, but did not show a consistent pattern of differences related to pH.  相似文献   

12.
Familial clustering and ethnic differences suggest that visceral leishmaniasis caused by Leishmania donovani is under genetic control. A recent genome scan provided evidence for a major susceptibility gene on Chromosome 22q12 in the Aringa ethnic group in Sudan. We now report a genome-wide scan using 69 families with 173 affected relatives from two villages occupied by the related Masalit ethnic group. A primary ten-centimorgan scan followed by refined mapping provided evidence for major loci at 1p22 (LOD score 5.65; nominal p = 1.72 × 10−7; empirical p < 1 × 10−5; λS = 5.1) and 6q27 (LOD score 3.74; nominal p = 1.68 × 10−5; empirical p < 1 × 10−4; λS = 2.3) that were Y chromosome–lineage and village-specific. Neither village supported a visceral leishmaniasis susceptibility gene on 22q12. The results suggest strong lineage-specific genes due to founder effect and consanguinity in these recently immigrant populations. These chance events in ethnically uniform African populations provide a powerful resource in the search for genes and mechanisms that regulate this complex disease.  相似文献   

13.
《PloS one》2013,8(4)
To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values <2×10−5 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P = 7.33×10−7 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P = 1.77×10−9) and rs3781834 (P = 1.04×10−8). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.71×10−5) and rs744373 near BIN1 (P = 1.39×10−4). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.  相似文献   

14.
The spore load of Ascosphaera species spores on larval chalkbrood cadavers and newly emergent adults of the alfalfa leafcutting bee, Megachile rotundata, was determined. The spore content of chalkbrood cadavers ranged from 3 × 106 to 5 × 108. Adults emerging through zero to nine cadavers carried spores on all body parts examined by scanning electron microscopy. Estimates of the total number of spores obtained from a series of adult washes ranged from 9 × 104 to 8 × 107. Some adult males which emerged through no cadavers carried 104 to 105 spores, indicating that nesting materials might also have been contaminated. However, the control of chalkbrood in commercial bee populations may not be accomplished simply by providing clean nesting materials as adults may still emerge through diseased larvae.  相似文献   

15.
Indigenous bacteria from poplar tree (Populus canadensis var. eugenei ‘Imperial Carolina’) and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 × 105 to 23 × 105 CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% ± 12% of all rhizosphere bacteria after 28 days (0.2 × 105 to 31 × 105 CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% ± 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively.  相似文献   

16.
This study evaluated the impacts of reducing nutrient levels on bacterial water quality in drinking water. Two American Water System facilities (sites NJ102a and IN610) with histories of coliform problems were involved, and each water utility received two pilot distribution systems (annular reactors). One reactor simulated the conventional treatment conditions (control), while the other reactor was used to assess the effect of biological filtration and subsequent reduced biodegradable organic matter levels on suspended (water column) and biofilm bacterial concentrations in the distribution systems. Biodegradable organic matter levels were reduced approximately by half after biological treatment. For site NJ102a, the geometric mean of the assimilable organic carbon concentrations was 217 μg/liter in the plant effluent and 91 μg/liter after biological filtration. For both sites, plant effluent biodegradable dissolved organic carbon levels averaged 0.45 mg/liter, versus 0.19 to 0.22 mg/liter following biological treatment. Biological treatment improved the stability of free chlorine residuals, while it had little effect on chloramine consumption patterns. High bacterial levels from the biological filters resulted in higher bacterial concentrations entering the test reactors than entering the control reactors. On average, biofilms in the model systems were reduced by 1 log unit (from 1.4 × 105 to 1.4 × 104 CFU/cm2) and 0.5-log unit (from 2.7 × 105 to 7.8 × 104 CFU/cm2) by biological treatment at sites NJ102a and IN610, respectively. Interestingly, it required several months of biological treatment before there was an observable impact on bacterial water quality in the system, suggesting that the effect of the treatment change was influenced by other factors (i.e., pipe conditions or disinfection, etc.).  相似文献   

17.
Thirty-eight bacteriophage-host systems were isolated from 22 of 45 refrigerated food products examined under psychrophilic conditions. Isolates were obtained from ground beef, pork sausage, chicken, raw skim milk, and oysters, whereas no isolations were made from liquid egg whites and processed meat products. Thirty of the 38 psychrophilic bacterial hosts were gram-negative rods, and 27 of these were classified within the genus Pseudomonas; three were members of the family Enterobacteriaceae. The remaining eight were gram-positive cocci, which were tentatively classified as Leuconostoc. Plate counts of psychrophilic bacteria were greater than 2.2 × 105/ml (g) in all but one sample which contained phage, whereas phage titers ranged from less than 100 to 6.3 × 106 plaque-forming units/ml (g). Phage isolates showed limited host ranges usually attacking only those hosts upon which they were isolated. Of eight phages tested against 13 cultures of known identity, one showed lytic action, and this was against strains of P. fragi.  相似文献   

18.
Quantitative Taq nuclease assays (TNAs) (TaqMan PCR), nested PCR in combination with denaturing gradient gel electrophoresis (DGGE), and epifluorescence microscopy were used to analyze the autotrophic picoplankton (APP) of Lake Constance. Microscopic analysis revealed dominance of phycoerythrin (PE)-rich Synechococcus spp. in the pelagic zone of this lake. Cells passing a 3-μm-pore-size filter were collected during the growth period of the years 1999 and 2000. The diversity of PE-rich Synechococcus spp. was examined using DGGE to analyze GC-clamped amplicons of a noncoding section of the 16S-23S intergenic spacer in the ribosomal operon. In both years, genotypes represented by three closely related PE-rich Synechococcus strains of our culture collection dominated the population, while other isolates were traced sporadically or were not detected in their original habitat by this method. For TNAs, primer-probe combinations for two taxonomic levels were used, one to quantify genomes of all known Synechococcus-type cyanobacteria in the APP of Lake Constance and one to enumerate genomes of a single ecotype represented by the PE-rich isolate Synechococcus sp. strain BO 8807. During the growth period, genome numbers of known Synechococcus spp. varied by 2 orders of magnitude (2.9 × 103 to 3.1 × 105 genomes per ml). The ecotype Synechococcus sp. strain BO 8807 was detected in every sample at concentrations between 1.6 × 101 and 1.3 × 104 genomes per ml, contributing 0.02 to 5.7% of the quantified cyanobacterial picoplankton. Although the quantitative approach taken in this study has disclosed several shortcomings in the sampling and detection methods, this study demonstrated for the first time the extensive internal dynamics that lie beneath the seemingly arbitrary variations of a population of microbial photoautotrophs in the pelagic habitat.  相似文献   

19.
Saccharomyces cerevisiae ATCC 4126 was grown within the macroporous matrix of asymmetric-walled polysulfone hollow-fiber membranes and on the exterior surfaces of isotropic-walled polypropylene hollow-fiber membranes. Nutrients were supplied and products were removed by single-pass perfusion of the fiber lumens. Growth of yeast cells within the macrovoids of the asymmetric-walled membranes attained densities of greater than 1010 cells per ml and in some regions accounted for nearly 100% of the available macrovoid volume, forming a tissue-like mass. A radial distribution of cell packing existed across the fiber wall, indicating an inadequate glucose supply to cells located beyond 100 μm from the lumen surface. By comparison, yeast cell growth on the exterior surfaces of the isotropic-walled membranes resulted in an average density of 3.5 × 109 viable cells per ml. Ethanol production by reactors containing isotropic polypropylene fibers reached a maximum value of 26 g/liter-h based on the total reactor volume. Reactor performance depended on the fiber packing density and on the glucose medium flow rate and was limited by low nutrient and product transport rates. The inhibition of ethanol production and the reduction in fermentation efficiency arose primarily from the accumulation of CO2 gas within the sealed reactor shell space.  相似文献   

20.
The efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes was evaluated. A five-strain mixture of E. coli O157:H7, S. enteritidis, or L. monocytogenes of approximately 108 CFU/ml was inoculated in 9 ml of electrolyzed oxidizing water (treatment) or 9 ml of sterile, deionized water (control) and incubated at 4 or 23°C for 0, 5, 10, and 15 min; at 35°C for 0, 2, 4, and 6 min; or at 45°C for 0, 1, 3, and 5 min. The surviving population of each pathogen at each sampling time was determined on tryptic soy agar. At 4 or 23°C, an exposure time of 5 min reduced the populations of all three pathogens in the treatment samples by approximately 7 log CFU/ml, with complete inactivation by 10 min of exposure. A reduction of ≥7 log CFU/ml in the levels of the three pathogens occurred in the treatment samples incubated for 1 min at 45°C or for 2 min at 35°C. The bacterial counts of all three pathogens in control samples remained the same throughout the incubation at all four temperatures. Results indicate that electrolyzed oxidizing water may be a useful disinfectant, but appropriate applications need to be validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号