首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The design, synthesis, in vitro evaluation, and conformational study of nitrosopyrimidine derivatives acting as antifungal agents are reported. Different compounds structurally related with 4,6-bis(alkyl or arylamino)-5-nitrosopyrimidines were evaluated. Some of these nitrosopyrimidines have displayed a significant antifungal activity against human pathogenic strains. In this paper, we report a new group of nitrosopyrimidines acting as antifungal agents. Among them, compounds 2a, 2b and 15, the latter obtained from a molecular modeling study, exhibited antifungal activity against Candida albicans, Candida tropicalis and Cryptococcus neoformans. We have performed a conformational and electronic analysis on these compounds by using quantum mechanics calculations in conjunction with Molecular Electrostatic Potentials (MEP) obtained from B3LYP/6–31G(d) calculations. Our experimental and theoretical results have led us to identify a topographical template which may provide a guide for the design of new nitrosopyrimidines with antifungal effects.  相似文献   

3.
4.
It was reported that γ-irradiation had a controversial therapeutic effect on glioma cells. We aimed to investigate the cytotoxic effect on the glioma cells induced by γ-irradiation and explore the treatment to rescue the phenotype alteration of remaining cells. We used transwell assay to detect the glioma cell invasion and migration capacity. Cell proliferation and apoptosis were tested by the CCK-8 assay and flow cytometry respectively. Western Blot was used to detect the activity of Hedgehog signaling pathway and Epithelial-to-Mesenchymal Transition (EMT) status. γ-irradiation showed cytotoxic effect on LN229 cells in vitro, whereas this contribution was limited in U251 cells. However, it could significantly stimulated EMT process in both LN229 and U251. Curcumin (CCM) could rescue EMT process induced by γ-irradiation via the suppression of Gli1 and the upregulation of Sufu. The location and expression of EMT markers were also verified by Immunofluorescence. Immunohistochemistry assay was used on intracranial glioma tissues of nude mice. The capacities of cell migration and invasion were suppressed with combined therapy. This research showed Curcumin could rescue the EMT process induced by γ-irradiation via inhibiting the Hedgehog signaling pathway and potentiate the cell cytotoxic effect in vivo and in vitro.  相似文献   

5.
Accumulating evidence suggests that heterotrimeric G protein activation may not require G protein subunit dissociation. Results presented here provide evidence for a subunit dissociation-independent mechanism for G protein activation by a receptor-independent activator of G protein signaling, AGS8. AGS8 is a member of the AGS group III family of AGS proteins thought to activate G protein signaling primarily through interactions with Gbetagamma subunits. Results are presented demonstrating that AGS8 binds to the effector and alpha subunit binding "hot spot" on Gbetagamma yet does not interfere with Galpha subunit binding to Gbetagamma or phospholipase C beta2 activation. AGS8 stimulates activation of phospholipase C beta2 by heterotrimeric Galphabetagamma and forms a quaternary complex with Galpha(i1), Gbeta(1)gamma(2), and phospholipase C beta2. AGS8 rescued phospholipase C beta binding and regulation by an inactive beta subunit with a mutation in the hot spot (beta(1)(W99A)gamma(2)) that normally prevents binding and activation of phospholipase C beta2. This demonstrates that, in the presence of AGS8, the hot spot is not used for Gbetagamma interactions with phospholipase C beta2. Mutation of an alternate binding site for phospholipase C beta2 in the amino-terminal coiled-coil region of Gbetagamma prevented AGS8-dependent phospholipase C binding and activation. These data implicate a mechanism for AGS8, and potentially other Gbetagamma binding proteins, for directing Gbetagamma signaling through alternative effector activation sites on Gbetagamma in the absence of subunit dissociation.  相似文献   

6.
7.
Aptamers are short single-stranded nucleic acids with high affinity to target molecules and are applicable to therapeutics and diagnostics. Regardless of an increasing number of reported aptamers, the structural basis of the interaction of RNA aptamer with proteins is poorly understood. Here, we determined the 2.15 Å crystal structure of the Fc fragment of human IgG1 (hFc1) complexed with an anti-Fc RNA aptamer. The aptamer adopts a characteristic structure fit to hFc1 that is stabilized by a calcium ion, and the binding activity of the aptamer can be controlled many times by calcium chelation and addition. Importantly, the aptamer–hFc1 interaction involves mainly van der Waals contacts and hydrogen bonds rather than electrostatic forces, in contrast to other known aptamer–protein complexes. Moreover, the aptamer–hFc1 interaction involves human IgG-specific amino acids, rendering the aptamer specific to human IgGs, and not crossreactive to other species IgGs. Hence, the aptamer is a potent alternative for protein A affinity purification of Fc-fusion proteins and therapeutic antibodies. These results demonstrate, from a structural viewpoint, that conformational plasticity and selectivity of an RNA aptamer is achieved by multiple interactions other than electrostatic forces, which is applicable to many protein targets of low or no affinity to nucleic acids.  相似文献   

8.
Cardiovascular disease is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). More than 44% of these patients present with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium and thus protects against atherosclerosis. However, whether COPD affects the repairing capacity of EPCs is unknown. Therefore, the objective of this study was to determine whether and how EPCs are involved in the vascular repair process in patients with COPD. In our study, EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence activated cell sorting. Transwell Migratory Assay was performed to determine the number of EPC colony-forming units and the adherent capacity late-EPCs to human umbilical vein endothelial cells. Following arterial damage in NOD/SCID mice, the number of EPCs incorporated at the injured vascular site was determined using a fluorescence microscope. We found that the number of EPC clusters and cell migration, as well as the expression of CXCR4, was significantly decreased in patients with COPD. Additionally, the number of late-EPCs adherent to HUVEC tubules was significantly reduced, and fewer VEGFR2(+)-staining cells were incorporated into the injured site in COPD patients. Our study demonstrates that EPC capacity of repair was affected in COPD patients, which may contribute to altered vascular endothelium in this patient population.  相似文献   

9.
Extracellular signals have to be precisely interpreted intracellularly and translated into diverse cellular behaviors often mediated by cytoskeletal changes. Semaphorins are one of the largest families of guidance cues and play a critical role in many systems. However, how different cell types translate extracellular semaphorin binding into intracellular signaling remains unclear. Here we developed and performed a novel image-based genome-wide functional RNAi screen for downstream signaling molecules that convert the interaction between Semaphorin 3E (Sema3E) and PlexinD1 into cellular behaviors. One of the genes identified in this screen is a RhoGAP protein, SH3-domain binding protein 1 (SH3BP1). We demonstrate that SH3BP1 mediates Sema3E-induced cell collapse through interaction with PlexinD1 and regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1) activity. The identification and characterization of SH3BP1 as a novel downstream effector of Sema3E-PlexinD1 provides an explanation for how extracellular signals are translated into cytoskeletal changes and unique cell behavior, but also lays the foundation for characterizing other genes identified from our screen to obtain a more complete picture of plexin signaling.  相似文献   

10.
Laboratory-scale reactors were used to watch aspects of biodegradation of wheat straw when supplemented with polysaccharidases (Czym) to increase the enzyme production of microorganisms involved during a composting process for mushroom production. Biochemical and biological parameters were tested both under aerobic and O2-limited conditions to assess degradability. These were measurement of released CO2 and NH3, determination of neutral detergent fibre content and cellulase activities from compost extract. The addition of Czym to decomposing straw had three consequences: (i) it supplied and released low quantities of readily available sugars; (ii) it increased the cellulase activities in the substrates; (iii) it increased the number of bacteria under aerobic conditions. The three effects were linked and the small quantity of sugars released by the addition of Czym may have acted as an activator of bacterial activities through an inductive mechanism. Correspondence to: S. Libmond  相似文献   

11.
S-Adenosylmethionine (SAM) plays a crucial role as a methyl donor in various biological processes and has been previously shown to be involved in adipogenesis in skeletal muscle. This study was conducted to explore the mechanism of SAM inducing adipogenesis in skeletal muscle. Adipose precursor cells, 3T3-L1, and C2C12 cells, were induced into adipogenic differentiation by addition of SAM in MDI-differentiation media (0.5 mmol/L isobutylmethylxanthine, 1 μm/L dexamethasone, and 10 μg/mL insulin) to explore the role of SAM in promoting adipogenesis. Subsequently, cells were cultured with a medium containing SAM alone at the beginning of differentiation to test the relationship between SAM-induced adipogenesis and Wnt/β-catenin, and Hedgehog signaling pathways that control the cell commitment to adipogenic- or myogenic-differentiation. We found SAM possessed an additive effect with MDI in promoting adipogenesis of 3T3-L1 and C2C12 cells at the beginning of adipogenic differentiation. SAM could also individually induce cell adipogenesis in a dose-dependent manner. Moreover, the expression of Wnt/β-catenin and Hedgehog signals and their targets were suppressed by SAM (P < 0.05). These results demonstrate that SAM, as an increasingly accepted nutritional supplement, can initiate adipogenesis of adipose precursor cells derived from adipose and muscle tissues, a function at least partly correlated with the suppression of Wnt/β-catenin and Hedgehog pathways.  相似文献   

12.
13.

Abstract  

The structure of a carbon monoxide (CO) adduct of a complex between heme and a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), has been characterized using 1H and 13C NMR spectroscopy and density function theory calculations. The study revealed that the heme binds to the 3′-terminal G-quartet of the DNA though a ππ stacking interaction between the porphyrin moiety of the heme and the G-quartet. The ππ stacking interaction between the pseudo-C 2-symmetric heme and the C 4-symmetric G-quartet in the complex resulted in the formation of two isomers possessing heme orientations differing by 180° rotation about the pseudo-C 2 axis with respect to the DNA. These two slowly interconverting heme orientational isomers were formed in a ratio of approximately 1:1, reflecting that their thermodynamic stabilities are identical. Exogenous CO is coordinated to heme Fe on the side of the heme opposite the G-quartet in the complex, and the nature of the Fe–CO bond in the complex is similar to that of the Fe–CO bonds in hemoproteins. These findings provide novel insights for the design of novel DNA enzymes possessing metalloporphyrins as prosthetic groups.  相似文献   

14.
15.
A Zn–salophen complex has been incorporated into POPC large unilamellar liposomes (LUV) obtained in phosphate buffer at pH 7.4. Fluorescence optical microscopy and anisotropy measurements show that the complex is located at the liposomal surface, close to the polar headgroups. The interaction of the POPC phosphate group with Zn2 + slowly leads to demetallation of the complex. The process follows first order kinetics and rate constants have been measured fluorimetrically in pure water and in buffered aqueous solution.The coordination of the phosphate group of monomeric POPC with salophen zinc also occurs in chloroform as detected by ESI-MS measurements.The effect of the Zn–salophen complex on the stability of POPC LUV has been evaluated at 25 °C by measuring the rate of release of entrapped 5(6)-carboxyfluorescein (CF) in the presence and in the absence of Triton X-100 as the perturbing agent. It turns out that the inclusion of the complex significantly increases the stability of POPC LUV.  相似文献   

16.

Purpose

We present experiences and reflections from social life cycle assessment (S-LCA) case study, the aim of which was to identify social hotspots, test and evaluate the methodology and propose improvements. This paper discusses the usability and applicability of the methodology used based on our experiences from the study. The main issues considered are whether the gathering of data and other information is feasible and straightforward to perform, whether the method provides added value and relevant results and how these can be presented.

Method

We have conducted a generic hotspot assessment on a laptop computer according to the Guidelines for Social Life Cycle Assessment of Products (Benoît and Mazijn 2009). The experiences presented were gathered throughout the case study. The supply chain of the laptop was simplified, and we focused on a limited number of materials. The impacts were assessed in relation to the area of protection on human well-being and to affected stakeholders. Social impacts from the actual use of the product were not included. Methodological sheets were used for guidance on inventory indicators and data sources for data collection. Country-specific data were collected and entered into a spreadsheet. The process has been guided by regular meetings in a reference group, composed of representatives of all stakeholder groups.

Results and discussion

The data collection process was impaired by a lack of data and low data quality. In order to relate the data collected to the product assessed, each country's share of the activity performed in each phase was determined, and the activity percentage was calculated. In order to consider and relate all the phases in the product system, we used an estimated activity variable due to the lack of data. We developed a new approach to impact assessment. By determining the combination of the most extensive activity, as well as the most negative in the range of possible values for involved countries, we identified the hotspots. The results were not further aggregated in order to promote transparency.

Conclusions

We found the S-LCA methodology to be feasible and useful. By handling all relevant issues within one study using a systems perspective on the product life cycle, knowledge can be gained. However, there are still some major challenges. The definition of relevant indicators, data availability, impact pathways, activity variables, results presentation and possible aggregation, the handling of stakeholder context and the restricted assessment of the use phase were identified as major issues to deal with in further studies. Communication, and hence use of the results, is a crucial issue to enable the outcome of a study to result in actions that actually improve human well-being.  相似文献   

17.
Cells respond to ionizing radiation (IR)–induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin–remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs.  相似文献   

18.
19.
Plasmodium falciparum takes advantage of two broadly defined alternate invasion pathways when infecting human erythrocytes: one that depends on and the other that is independent of host sialic acid residues on the erythrocyte surface. Within the sialic acid-dependent (SAD) and sialic acid-independent (SAID) invasion pathways, several alternate host receptors are used by P. falciparum based on its particular invasion phenotype. Earlier, we reported that two putative extracellular regions of human erythrocyte band 3 termed 5C and 6A function as host invasion receptor segments binding parasite proteins MSP1 and MSP9 via a SAID mechanism. In this study, we developed two mono-specific anti-peptide chicken IgY antibodies to demonstrate that the 5C and 6A regions of band 3 are exposed on the surface of human erythrocytes. These antibodies inhibited erythrocyte invasion by the P. falciparum 3D7 and 7G8 strains (SAID invasion phenotype), and the blocking effect was enhanced in sialic acid-depleted erythrocytes. In contrast, the IgY antibodies had only a marginal inhibitory effect on FCR3 and Dd2 strains (SAD invasion phenotype). A direct biochemical interaction between erythrocyte band 3 epitopes and parasite RhopH3, identified by the yeast two-hybrid screen, was established. RhopH3 formed a complex with MSP119 and the 5ABC region of band 3, and a recombinant segment of RhopH3 inhibited parasite invasion in human erythrocytes. Together, these findings provide evidence that erythrocyte band 3 functions as a major host invasion receptor in the SAID invasion pathway by assembling a multi-protein complex composed of parasite ligands RhopH3 and MSP1.  相似文献   

20.
Asymmetric fluid flow in the node and Nodal signaling in the left lateral plate mesoderm (LPM) drive left–right patterning of the mammalian body plan. However, the mechanisms linking fluid flow to asymmetric gene expression in the LPM remain unclear. Here we show that the small GTPase Rab23, known for its role in Hedgehog signaling, plays a separate role in Nodal signaling and left–right patterning in the mouse embryo. Rab23 is not required for initial symmetry breaking in the node, but it is required for expression of Nodal and Nodal target genes in the LPM. Microinjection of Nodal protein and transfection of Nodal cDNA in the embryo indicate that Rab23 is required for the production of functional Nodal signals, rather than the response to them. Using gain- and loss-of function approaches, we show that Rab23 plays a similar role in zebrafish, where it is required in the teleost equivalent of the mouse node, Kupffer?s vesicle. Collectively, these data suggest that Rab23 is an essential component of the mechanism that transmits asymmetric patterning information from the node to the LPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号