首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protective role for CD8+ T cells during viral infections is generally accepted, but little is known about how CD8+ T cell responses develop during primary infections in infants, their efficacy, and how memory is established after viral clearance. We studied CD8+ T cell responses in bronchoalveolar lavage (BAL) samples and blood of infants with a severe primary respiratory syncytial virus (RSV) infection. RSV-specific CD8+ T cells with an activated effector cell phenotype: CD27+CD28+CD45RO+CCR7-CD38+HLA-DR+Granzyme B+CD127- could be identified in BAL and blood. A high proportion of these CD8+ T cells proliferated and functionally responded upon in vitro stimulation with RSV Ag. Thus, despite the very young age of the patients, a robust systemic virus-specific CD8+ T cell response was elicited against a localized respiratory infection. RSV-specific T cell numbers as well as the total number of activated effector type CD8+ T cells peaked in blood around day 9-12 after the onset of primary symptoms, i.e., at the time of recovery. The lack of a correlation between RSV-specific T cell numbers and parameters of disease severity make a prominent role in immune pathology unlikely, in contrast the T cells might be involved in the recovery process.  相似文献   

2.
Zhang W  Tripp RA 《Journal of virology》2008,82(24):12221-12231
Respiratory syncytial virus (RSV) is a major cause of morbidity in infants, young children, and the elderly worldwide. Currently, there is no effective vaccine, and antiviral drugs to control infection are limited. RNA interference is a powerful tool amenable to development of antiviral drugs. Using small interfering RNA (siRNA) targeting the RSV P gene (siRNA-P), RSV replication can be silenced both in vitro and in a BALB/c model of RSV infection. In this study, we examine the effect of siRNA prophylaxis on the primary and memory immune response to RSV infection in mice. We show that mice prophylactically treated with siRNA-P to decrease but not eliminate RSV replication exhibit reduced pulmonary inflammation and lung pathogenesis and produce a robust anti-RSV memory response when subsequently challenged with RSV. The pulmonary T-cell memory response was characterized by high numbers of CD44hi CD62Llo CD4+ and CD8+ T cells, M2 peptide tetramer+ CD8+ T cells expressing gamma interferon, and an RSV-specific antibody response. The results support the hypothesis that siRNAs can be developed as effective antiviral drugs that can be used to reduce the viral load and parameters of pathogenesis without limiting the induction of the memory immune response.  相似文献   

3.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.  相似文献   

4.
Respiratory syncytial virus (RSV) is a major cause of morbidity from respiratory infection in infants, young children and the elderly. No effective vaccine against RSV is currently available and studies of the natural history of RSV infection suggest repeated infections with antigenically related virus strains are common throughout an individual's lifetime. We have studied the CD8+ T-cell response during experimental murine RSV infection and found that RSV inhibits the expression of effector activity by activated RSV-specific CD8+ T cells infiltrating the lung parenchyma and the development of pulmonary CD8+ T-cell memory by interfering with TCR-mediated signaling. These data suggest a possible mechanism to explain the limited duration of protective immunity in RSV infection.  相似文献   

5.
Vaccination of children with a formalin-inactivated (FI) respiratory syncytial virus (RSV) vaccine led to exacerbated disease including pulmonary eosinophilia following a natural RSV infection. Immunization of BALB/c mice with FI-RSV or a recombinant vaccinia virus (vv) expressing the RSV attachment (G) protein (vvG) results in a pulmonary Th2 response and eosinophilia after RSV challenge that closely mimics the RSV vaccine-enhanced disease observed in humans. The underlying causes of RSV vaccine-enhanced disease remain poorly understood. We demonstrate here that RSV M2-specific CD8 T cells reduce the Th2-mediated pathology induced by vvG-immunization and RSV challenge in an IFN-gamma-independent manner. We also demonstrate that FI-RSV immunization does not induce a measurable RSV-specific CD8 T cell response and that priming FI-RSV-immunized mice for a potent memory RSV-specific CD8 T cell response abrogates pulmonary eosinophilia after subsequent RSV challenge. Our results suggest that the failure of the FI-RSV vaccine to induce a CD8 T cell response may have contributed to the development of pulmonary eosinophilia and augmented disease that occurred in vaccinated individuals.  相似文献   

6.
Following infection with respiratory syncytial virus (RSV), reinfection in healthy individuals is common and presumably due to ineffective memory T cell responses. In peripheral blood of healthy adults, a higher CD4(+)/CD8(+) memory T cell ratio was observed compared with the ratio of virus-specific effector CD4(+)/CD8(+) T cells that we had found in earlier work during primary RSV infections. In mice, we show that an enhanced ratio of RSV-specific neutralizing to nonneutralizing Abs profoundly enhanced the CD4(+) T cell response during RSV infection. Moreover, FcγRs and complement factor C1q contributed to this Ab-mediated enhancement. Therefore, the increase in CD4(+) memory T cell response likely occurs through enhanced endosomal Ag processing dependent on FcγRs. The resulting shift in memory T cell response was likely amplified by suppressed T cell proliferation caused by RSV infection of APCs, a route important for Ag presentation via MHC class I molecules leading to CD8(+) T cell activation. Decreasing memory CD8(+) T cell numbers could explain the inadequate immunity during repeated RSV infections. Understanding this interplay of Ab-mediated CD4(+) memory T cell response enhancement and infection mediated CD8(+) memory T cell suppression is likely critical for development of effective RSV vaccines.  相似文献   

7.
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.  相似文献   

8.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

9.
Respiratory syncytial virus (RSV) is the major pathogen causing respiratory disease in young infants and it is an important cause of serious illness in the elderly since the infection provides limited immune protection against reinfection. In order to explain this phenomenon, we investigated whether healthy adults of different age (20-40; 41-60 and > 60 years), have differences in central and effector memory, RSV-specific CD8+ T cell memory immune response and regulatory T cell expression status. In the peripheral blood of these donors, we were unable to detect any age related difference in term of central (CD45RA-CCR7+) and effector (CD45RA-CCR7-) memory T cell frequency. On the contrary, we found a significant increase in immunosuppressive regulatory (CD4+25+FoxP3+) T cells (Treg) in the elderly. An immunocytofluorimetric RSV pentamer analysis performed on these donors' peripheral blood mononuclear cells (PBMCs), in vitro sensitized against RSV antigen, revealed a marked decline in long-lasting RSV specific CD8+ memory T cell precursors expressing interleukin 7 receptor α (IL-7Rα), in the elderly. This effect was paralleled by a progressive switch from a Th1 (IFN-γ and TNF-α) to a Th2 (IL-10) functional phenotype. On the contrary, an increase in Treg was observed with aging. The finding of Treg over-expression status, a prominent Th2 response and an inefficient RSV-specific effector memory CD8+ T cell expansion in older donors could explain the poor protection against RSV reinfection and the increased risk to develop an RSV-related severe illness in this population. Our finding also lays the basis for new therapeutic perspectives that could limit or prevent severe RSV infection in elderly.  相似文献   

10.
CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8+ cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8+ T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8+ T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8+ T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8+ T cells. These memory CD8+ T cells had lower cytokine expression than effector CD8+ T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8+ T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8+ T cell cytokine expression.  相似文献   

11.
Respiratory syncytial virus (RSV) is a major cause of lower respiratory infection in young children and the elderly. Studies of mice suggest that RSV suppresses the effector activity of CD8 T cells and the development of pulmonary CD8 T cell memory, in which the impaired effector activity could be recovered by in vitro IL-2 treatment. To investigate the effect of in vivo IL-2 expression on RSV immunity, mice were infected with RSV followed by administration of replication-defective adenovirus expressing IL-2. The effector activity of RSV M2-specific CD8 T cells and the development of CD8 T cell memory in the lung was significantly increased by IL-2 expression. Furthermore, the Ab responses against RSV were augmented by IL-2. Interestingly, weight loss and illness caused by RSV challenge were substantially reduced by IL-2 priming, suggesting that the pathogenesis of RSV-related disease could be prevented by IL-2-mediated enhancement of beneficial immune responses. Thus, our results show that IL-2 has potential to be used as a vaccine adjuvant against RSV infection.  相似文献   

12.
Breast feeding reduces the risk of developing severe respiratory syncytial virus (RSV) infections in infants. In addition to maternal antibodies, other immune-modulating factors in human milk contribute to this protection. Specific dietary prebiotic oligosaccharides, similar to oligosaccharides present in human milk, were evaluated in a C57BL/6 mouse RSV infection model. During primary RSV infection, increased numbers of RSV-specific CD4+ T cells producing gamma interferon (IFN-γ) were found in the lungs at days 8 to 10 postinfection in mice receiving diet containing short-chain galactooligosacharides, long-chain fructooligosaccharides, and pectin-derived acidic oligosaccharides (termed scGOS/lcFOS/pAOS). In a Th2-skewed formalin-inactivated (FI)-RSV vaccination model, the prebiotic diet reduced RSV-specific Th2 cytokine (interleukin-4 [IL-4], IL-5, and IL-13)-producing CD4+ T cells in the lung and the magnitude of airway eosinophilia at day 4 and 6 after infection. This was accompanied by a decreased influx of inflammatory dendritic cells (CD11b+/CD11c+) and increased numbers of IFN-γ-producing CD4+ and CD8+ T cells at day 8 after viral challenge. These findings suggest that specific dietary oligosaccharides can influence trafficking and/or effector functions of innate immune, CD4+, and CD8+ T cell subsets in the lungs of RSV-infected mice. In our models, scGOS/lcFOS/pAOS had no effect on weight but increased viral clearance in FI-RSV-vaccinated mice 8 days after infection. The increased systemic Th1 responses potentiated by scGOS/lcFOS/pAOS might contribute to an accelerated Th1/Th2 shift of the neonatal immune system, which might favor protective immunity against viral infections with a high attack rate in early infancy, such as RSV.  相似文献   

13.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

14.

Background

A diverse repertoire of naïve T cells is thought to be essential for a robust response to new infections. However, a key aspect of aging of the T cell compartment is a decline in numbers and diversity of peripheral naïve T cells. We have hypothesized that the age-related decline in naïve T cells forces the immune system to respond to new infections using cross-reactive memory T cells generated to previous infections that dominate the aged peripheral T cell repertoire.

Results

Here we confirm that the CD8 T cell response of aged, influenza-naïve mice to primary infection with influenza virus is dominated by T cells that derive from the memory T cell pool. These cells exhibit the phenotypic characteristics of virtual memory cells rather than true memory cells. Furthermore, we find that the repertoire of responding CD8 T cells is constrained compared with that of young mice, and differs significantly between individual aged mice. After infection, these virtual memory CD8 T cells effectively develop into granzyme-producing effector cells, and clear virus with kinetics comparable to naïve CD8 T cells from young mice.

Conclusions

The response of aged, influenza-naive mice to a new influenza infection is mediated largely by memory CD8 T cells. However, unexpectedly, they have the phenotype of VM cells. In response to de novo influenza virus infection, the VM cells develop into granzyme-producing effector cells and clear virus with comparable kinetics to young CD8 T cells.
  相似文献   

15.
Respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in infants and young children worldwide, but currently no safe and effective vaccine is available. The RSV G glycoprotein (RSVG), a major attachment protein, is an important target for the induction of protective immune responses during RSV infection. However, it has been thought that a CD4+ T cell epitope (a.a. 183–195) within RSVG is associated with pathogenic pulmonary eosinophilia. To develop safe and effective RSV vaccine using RSV G protein core fragment (Gcf), several Gcf variants resulting from modification to CD4+ T cell epitope were constructed. Mice were immunized with each variant Gcf, and the levels of RSV-specific serum IgG were measured. At day 4 post-challenge with RSV subtype A or B, lung viral titers and pulmonary eosinophilia were determined and changes in body weight were monitored. With wild type Gcf derived from RSV A2 (wtAGcf), although RSV A subtype-specific immune responses were induced, vaccine-enhanced disease characterized by excessive pulmonary eosinophil recruitment and body weight loss were evident, whereas wtGcf from RSV B1 (wtBGcf) induced RSV B subtype-specific immune responses without the signs of vaccine-enhanced disease. Mice immunized with Th-mGcf, a fusion protein consisting CD4+ T cell epitope from RSV F (F51–66) conjugated to mGcf that contains alanine substitutions at a.a. position 185 and 188, showed higher levels of RSV-specific IgG response than mice immunized with mGcf. Both wtAGcf and Th-mGcf provided complete protection against RSV A2 and partial protection against RSV B. Importantly, mice immunized with Th-mGcf did not develop vaccine-enhanced disease following RSV challenge. Immunization of Th-mGcf provided protection against RSV infection without the symptom of vaccine-enhanced disease. Our study provides a novel strategy to develop a safe and effective mucosal RSV vaccine by manipulating the CD4+ T cell epitope within RSV G protein.  相似文献   

16.
Respiratory syncytial virus (RSV) can cause bronchiolitis and viral pneumonia in young children and the elderly. Lack of vaccines and recurrence of RSV infection indicate the difficulty in eliciting protective memory immune responses. Tissue resident memory T cells (TRM) can confer protection from pathogen re-infection and, in human experimental RSV infection, the presence of lung CD8+ TRM cells correlates with a better outcome. However, the requirements for generating and maintaining lung TRM cells during RSV infection are not fully understood. Here, we use mouse models to assess the impact of innate immune response determinants in the generation and subsequent expansion of the TRM cell pool during RSV infection. We show that CD8+ TRM cells expand independently from systemic CD8+ T cells after RSV re-infection. Re-infected MAVS and MyD88/TRIF deficient mice, lacking key components involved in innate immune recognition of RSV and induction of type I interferons (IFN-α/β), display impaired expansion of CD8+ TRM cells and reduction in antigen specific production of granzyme B and IFN-γ. IFN-α treatment of MAVS deficient mice during primary RSV infection restored TRM cell expansion upon re-challenge but failed to recover TRM cell functionality. Our data reveal how innate immunity, including the axis controlling type I IFN induction, instructs and regulates CD8+ TRM cell responses to RSV infection, suggesting possible mechanisms for therapeutic intervention.  相似文献   

17.

Background

Illness associated with Respiratory Syncytial Virus (RSV) remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F) of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity.

Methodology and Principal Findings

BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF) protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA), stable emulsion (SE), GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats.

Conclusions/Significance

These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.  相似文献   

18.
Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease.  相似文献   

19.
Cytotoxic T-cell response to respiratory syncytial virus in mice.   总被引:15,自引:6,他引:9       下载免费PDF全文
The role of the humoral and cellular arms of the immune response in protection against respiratory syncytial virus (RSV) infection and in the pathogenesis of the severe forms of this disease is poorly understood. The recent demonstration that some inbred mouse strains can be infected with RSV has opened the way to a detailed investigation of RSV immunity. We report here the finding of major histocompatibility complex-restricted, RSV-specific memory cytotoxic T cells in the spleens of BALB/c and C57BL mice after intranasal infection; these T cells recognize the Long, A2, and 8/60 (human) strains of RSV. Both K and D locus major histocompatibility complex alleles can restrict the cytotoxic response; however, in the two haplotypes tested, Dd is a low-responder allele and Kb is a nonresponder allele for RSV. UV-inactivated RSV (when given intraperitoneally) can prime mice for development of cytotoxic T cell memory, restimulate cytotoxic T cell cultures in vitro, and form a target for the cytotoxic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号