首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundNanotoxicology is a major field of study that reveals hazard effects of nanomaterials on the living cells.MethodsIn the present study, Copper/Copper oxide nanoparticles (Cu/CuO NPs) were prepared by the chemical reduction method and characterized by different techniques such as: X-Ray Diffraction, Transmission and Scanning Electron Microscopy. Evaluation of the toxicity of Cu/CuO NPs was performed on 2 types of cells: human lung normal cell lines (WI-38) and human lung carcinoma cell (A549). To assess the toxicity of the prepared Cu/CuOs NPs, the two cell types were exposed to Cu/CuO NPs for 72 h. The half-maximal inhibitory concentration IC50 of Cu/CuO NPs for both cell types was separately determined and used to examine the cell genotoxicity concurrently with the determination of some oxidative stress parameters: nitric oxide, glutathione reduced, hydrogen peroxide, malondialdehyde and superoxide dismutase.ResultsCu/CuO NPs suppressed proliferation and viability of normal and carcinoma lung cells. Treatment of both cell types with their IC50’s of Cu/CuO NPs resulted in DNA damage besides the generation of reactive oxygen species and consequently the generation of a state of oxidative stress.ConclusionOverall, it can be concluded that the IC50's of the prepared Cu/CuO NPs were cytotoxic and genotoxic to both normal and cancerous lung cells.  相似文献   

2.
Copper accumulation, subcellular localization and ecophysiological responses to excess copper were investigated using pot culture experiments with two Daucus carota L. populations, from a copper mine and an uncontaminated field site, respectively. Significant differences of malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX)] activities of leaves under Cu treatment were observed between the two populations. At high Cu concentrations (400 and 800 mg kg−1), a significant increase in contents of MDA and H2O2 but a significant decrease in activities of SOD, CAT and APX were observed in uncontaminated population. Contrarily, the population from copper mine maintained a lower level of MDA and H2O2 but higher activities of SOD, CAT and APX. Copper accumulation in roots and shoots increased significantly with the increase of copper concentrations in soils in the two populations. No significant difference of the total Cu in roots and shoots was found between the two populations at same copper treatment. There were also no striking differences of cell wall-bound Cu and protoplasts Cu of leaves between the two populations. The difference was that Cu concentration in vacuoles of leaves was 1.5-fold higher in contaminated site (CS) population than in uncontaminated site population. Hence, more efficient vacuolar sequestration for Cu and maintaining high activities of SOD, CAT and APX in the CS population played an important role in maintaining high Cu tolerance.  相似文献   

3.
Abstract

The concentration, mobility, bioavailability, distribution and associations of two essential micronutrient elements (copper and zinc) to the oil palm in wetland soils of the Niger delta region of Nigeria was assessed by means of chemical fractionation analysis. The water soluble and plant available fractions were introduced into the sequential extraction scheme. Also assessed were the bioaccumulation (concentration and distribution) of these metals in the leaves and fruits of the oil palm of various ages found around the soil profiles. Copper was obtained more in the amorphous Fe-oxide fraction (151.05 mg kg?1), but evenly distributed in the exchangeable component (16.16%) with a maximum value of 126.6 mg kg?1. The water soluble and plant available fractions had 16.15 and 7.54% distribution of Cu respectively. Zinc had 2.35 and 30.42% distribution in the water soluble and plant available fractions respectively. The lowest mean amount of Cu (1.33 mg kg?1) was determined in the leaves of palms of ages 15–32 years. Palms greater than 60 years had the highest mean concentration of copper (3.91 mg kg?1) in the leaves while the endosperm (kernel) of palms between 2 and 10 years had concentration of 9.07 mg kg?1. The fibrous oily mesocarp had the highest amount (16.78 mg kg?1) of copper in the older palms (>60 years). Similarly, Zn was dominant in the older palms with a mean concentration of 187.14mg kg?1 obtained in the endosperm (kernel). The bioaccumulation pattern of both metals by the palms irrespective of age and the fractionation analysis revealed sufficient bioavailable and reserved amounts of Zn and Cu in the wetland soils.  相似文献   

4.
Copper sulfate (CuSO4), micron copper oxide (micron CuO) and nano copper oxide (nano CuO) at different concentrations were, respectively, added to culture media containing Caco-2 cells and their effects on Ctr1, ATP7A/7B, MT and DMT1 gene expression and protein expression were investigated and compared. The results showed that nano CuO promoted mRNA expression of Ctr1 in Caco-2 cells, and the difference was significant compared with micron CuO and CuSO4. Nano CuO was more effective in promoting the expression of Ctr1 protein than CuSO4 and micron CuO at the same concentration. Nano CuO at a concentration of 62.5 μM increased the mRNA expression levels of ATP7A and ATP7B, and the difference was significant compared with CuSO4. The addition of CuSO4 and nano CuO to the culture media promoted the expression of ATP7B proteins. CuSO4 at a concentration of 125 μM increased the mRNA expression level of MT in Caco-2 cells, and the difference was significant compared with nano CuO and micron CuO. Nano CuO at a concentration of 62.5 μM inhibited the mRNA expression of DMT1, and the difference was significant compared with CuSO4 and micron CuO. Thus, the effects of CuSO4, micron CuO and nano CuO on the expression of copper transport proteins and the genes encoding these proteins differed considerably. Nano CuO has a different uptake and transport mechanism in Caco-2 cells to those of CuSO4 and micron CuO.  相似文献   

5.
Abstract

Eighteen plant species belonging to 11 families commonly growing in the Pathratola, Dhorli and Pipardhar areas of the Malanjkhand Copper Province were studied. High Cu values were observed in the leaves of the abundant species of Terminalia alata in Pipardhar area. The leaves of T. alata also show wide pre- and post-monsoon seasonal variations in their Cu contents (average: 593-1,713 μg g-1). Amongst several samples from various species, most of the leaf samples of T. alata, collected from the Pipardhar area showed high Cu values that lie within and occupy the high ends of cumulative probability curves. Anomalous Cu values of > 200 and > 497 μg g-1were obtained for most of the T. alata leaves of the Pipradhar area for pre- and post-monsoon periods, respectively. The correlation coefficient values between Cu contents of T. alata leaves and substrate soil do not show a significant relationship for any area in either season. However, t- test results between Cu contents of T. alata leaves and substrate soil samples indicated a significant relationship for the samples collected from the Pipardhar and Pathratola areas during the pre-monsoon period. For post-monsoon period, the t-test results show non-significant relationship in the Pipardhar area. Another sampling area selected adjacent to the Pipardhar area had significance in the t-test results between the two sample periods. Polynomial curves revealed that 465 and 480 μg g-1 of Cu in the soil are the “toxicity threshold limits” for the pre- and post-monsoon periods, respectively. Possible reasons attributed to the high bioassay values found in the T. alata leaves have been discussed in the paper.  相似文献   

6.
Context: Magnetic nanomaterials (Fe3O4 NMs) have become novel tools with multiple biological and medical applications because of their biocompatibility. However, adverse health effects of these NMs are of great interest to learn.

Objective: This study was designed to assess the size and dose-dependent effects of Fe3O4 NMs and its bulk on oxidative stress biomarkers after post–subacute treatment in female Wistar rats.

Methods: Rats were daily administered with 30, 300 and 1000?mg/kg b.w. doses for 28?d of Fe3O4 NMs and its bulk for biodistribution and histopathological studies.

Results: Fe3O4 NMs treatment caused significant increase in lipid peroxidation levels of treated rats. It was also observed that the NM treatment elicited significant changes in enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase in treated rat organs with major reduction in glutathione content. Metal content analysis revealed that tissue deposition of NM in the organs was higher when compared to bulk and caused histological changes in liver.

Conclusion: This study demonstrated that for same dose, NM showed higher bioaccumulation, oxidative stress and tissue damage than its bulk. The difference in toxic effect of Fe3O4 nano and bulk could be related to their altered physicochemical properties.  相似文献   

7.
Yellow lupin (Lupinus luteus L.) plants were grown in hydroponic solution for 15 d under different copper concentrations (0.1, 0.5, 1.0, 10, 25 and 50 μM). With increasing Cu concentration total biomass was not affected, leaf area slightly decreased, while chlorophyll content decreased considerably. Cu content increased significantly both in roots and in leaves, but the contents of other ions were only slightly affected at the highest Cu concentration (Mn content decreased both in roots and in leaves, P content decreased only in leaves and Zn content increased in roots). Superoxide dismutase (SOD) activity increased up to day 7 after copper application. Peroxidase (GPOD) and polyphenol oxidase (PPO) activities also increased, while catalase (CAT) activity remained constant.  相似文献   

8.
The objective of this study in 2009 was to examine whether levels of cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb) and chromium (Cr) were higher in the leaves than in the stems of a submerged aquatic plant Ceratophyllum demersum in Anzali wetland. Cadmium, Pb and Cr concentrations were highest in the leaves. The mean concentrations of Cd and Cr in the leaves at all the sampling sites ranged between 0.94–1.26 μg g?1 and 1.03–2.71 μg g?1, respectively. Lead also had its highest concentrations in the leaves. The mean concentration of Pb in the leaves at all sampling sites ranged between 7.49–11.88 μg g?1. Copper and Zn concentrations were highest in the stems. The mean concentrations of Cu and Zn in the stems at all sampling sites ranged between 10.79–17.91 μg g?1 and 19.89–40.01 μg g?1, respectively. Cadmium and Pb concentrations were higher in the leaves than in the stems, while Zn concentration was higher in the stems than in the leaves. Accumulation of Cu and Cr in the organs of C. demersum was in descending order of leaf ~ stem, since there was no significant difference between their mean concentrations in the leaves and stems.  相似文献   

9.
The effects of Cu, Cd, and Pb toxicity on photosynthesis in cucumber leaves (Cucumis sativus L.) were studied by the measurements of gas exchange characteristics, chlorophyll (Chl) fluorescence parameters, and Chl content. Concentrations of metals in sequence of 20 μM Cu, 20 and 50 μM Cd, and 1 000 μM Pb decreased the plant dry mass to 50–60 % after 10 d of treatment whereas 50 μM of Cu decreased it to 30 %. The content of Cd in leaves of plants treated with 50 μM Cd was three times higher than the contents of Cu and Pb after plant treatment with 50 μM Cu or 1 000 μM Pb. Hence Cd was transported to leaves much better than Cu and Pb. Nevertheless, the net photosynthetic rate and stomatal conductance in leaves treated with 50 μM Cu or Cd were similarly reduced. Thus, Cu was more toxic than Cd and Pb for photosynthesis in cucumber leaves. None of the investigated metals decreased internal CO2 concentrations. Also the effect of metals on potential efficiency of photosystem 2, PS2 (Fv/Fm) was negligible. The metal dependent reduction of PS2 quantum efficiency (ΦPS2) after plant adaptation in actinic irradiation was more noticeable. This could imply that reduced demand for ATP and NADPH in a dark phase of photosynthesis caused a down-regulation of PS2 photochemistry. Furthermore, in leaves of metal-treated plants the decrease in water percentage as well as lower contents of Chl and Fe were observed. Thus photosynthesis is not the main limiting factor for cucumber growth under Cu, Cd, or Pb stress.  相似文献   

10.
抗氧化系统在海州香薷耐铜机制中的作用   总被引:1,自引:0,他引:1  
利用溶液培养的方法研究了铜胁迫下海州香薷根系和地上部分MDA含量,各种抗氧化酶及非酶抗氧化系统的变化。结果表明,不同浓度铜处理8d后,海州香薷根系中MDA含量显著增加,叶片中则无显著变化;根系中SOD、POD、CAT、APX、GR活性和叶片中POD、SOD的活性随铜处理浓度的增加而显著增加,而50-200μmol·L^-1。铜处理条件下叶片中CAT、APX、GR活性与对照相比无明显差异。除CAT外,根系中这些抗氧化酶的活性都远远大于叶片中的活力。另外,实验结果表明,50μmol·L^-1 Cu^2+对海州香薷的生物量并没有显著影响,当铜浓度达到100和200μmol·L^-1。时,铜则可显著降低海州香薷根系的生物量,对地上部生物量仍无显著影响。  相似文献   

11.
Abstract

Copper speciation and bioavailability for Scenedesmus quadricauda has been studied in natural waters and in synthetic culture media. Other elements were studied simultaneously. When phosphorus and nitrogen limitation were excluded by adding these elements, copper was limiting algal growth in some natural waters. In the toxic range, growth inhibition by copper was highly correlated with copper detected by electrochemical methods and with calculated free copper.

Copper was toxic to S. quadricauda when free copper concentrations roughly exceeded 10?10.5 M, and was limiting for values somewhere lower than 10?12.5 M. Because we found copper limitation in some natural water samples, free copper concentration in those water samples therefore must have been lower than 10?12.5 M.

The hypothesis that the free metal concentration rather than the total concentration determines bioavailability was confirmed for copper, cobalt and zinc.  相似文献   

12.
Toxicity of copper to T. pseudonana (formerly Cyclotella nana, clone 13-1) wax examined in inshore seawater using a 96-hr bioassay method. Raw unenriched seawater wax filtered through a 0.22-μ membrane filter and then pasteurized, for 30 min at 60 C. Following this treatment, samples contained 0.68–1.14 μg Cu/liter. Copper was added as the chloride in 5-μg increments over the range of 5 to 30 μg/liter (about 0.1–0.5 μM). Population densities, mean cell, volume, and 14C bicarbonate uptake were measured. Population growth, and 14C uptake by T. pseudonana displayed inhibition over the entire range of added copper. Growth rate constant (k) of T. pseudonana decreased with increasing copper concentration and during the course of growth at each concentration. Correspondingly, mean cell volumes increased with copper concentration and time. Copper toxicity varied in different water samples. The presence of decomposed natural plankton and detritus decreased toxicity. In the absence of enrichment, bacteria had little effect on copper toxicity. H exults were influenced by glassware treatment, collection and storage of seawater, and absence of enrichments.  相似文献   

13.
14.
BackgroundExcess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs).MethodsCEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 μM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected.ResultsResults showed that Cu treatment (100 or 200 μM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 μM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 μM Cu groups.ConclusionIn conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible.  相似文献   

15.
Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and economical significance, molecular mechanisms under Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was performed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth characteristics were markedly inhibited, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and 150 µM) of CuSO4. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (≥1.5-fold) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (≥1.5-fold) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in C4 plants.  相似文献   

16.
Copper oxide nanomaterials were synthesized by a facile sustainable biological method using two plant species (Zanthoxylum armatum DC. and Berberis lycium Royle ). The formation of materials was confirmed by FT‐IR, ATR, UV‐visible, XRD, TEM, SEM, EDX, TGA and PL. The antibacterial activity was evaluated by agar well diffusion method to ascertain the efficacy of plant species extract and extract derived copper oxide nanomaterials against six Gram‐positive bacteria namely Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Corynebacterium diphtheriae, Corynebacterium xerosis, Bacillus cereus and four Gram‐negative bacteria such as Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris against the standard drug, Ciprofloxacin for Gram‐positive and Gentamicin for Gram‐negative bacteria, respectively. In both cases, copper oxide nanomaterials were found to be sensitive in all the bacterial species. Sensitivity of copper oxide nanomaterials shows an be higher as compared to plant species extract against different bacteria. Scavenging activity of plant extracts along with nanomaterials have been accessed using previously reported protocols employing ascorbic acid as standard. Scavenging activity of copper oxide nanomaterials shows an increase with increase in concentration. The biological activity (bactericidal and scavenging efficiency) of plant derived copper oxide nanomaterials revealed that these materials can be used as potent antimicrobial agent and DPPH scavengers in industrial as well as pharmacological fields.  相似文献   

17.
BackgroundThe balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models.Scope of reviewRedox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs.Major conclusionsDirect interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction.General significanceThe usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.  相似文献   

18.
Haiyan Chu  Paul Grogan 《Plant and Soil》2010,328(1-2):411-420
Copper uptake, localisation and biochemical and physiological traits were studied in hydroponically-grown Erica andevalensis plants at different increasing concentrations of Cu (1 µM, 50 µM, 100 µM, 250 µM, and 500 µM). Increasing Cu concentration in the nutrient medium led to a significative reduction in plant growth rate, an increase in root Cu concentration, leaf photosynthetic pigments and root peroxidase activity. Copper accumulation followed the pattern roots>stems>leaves, a typical behaviour of metal-excluders. Copper treatments led to significant changes in the free amino acid composition in shoots and roots and the concentration of polyamines in shoots. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a partial restriction of upward Cu transport by root vascular tissues. In leaf tissues, Cu mostly accumulated in the abaxial epidermis, suggesting a mechanism of compartmentalization to restrict mesophyll accumulation. The toxic effects of excess Cu were avoided to a certain extent by root immobilization, tissue compartmentalization, synthesis of complexing amino acids and induction of enzymes to prevent oxidative damage are among mechanisms adopted by Erica andevalensis to thrive in acidic-metalliferous soils.  相似文献   

19.
The mechanism of copper (Cu) neurotoxicity was studied in the RCSN-3 neuronal dopaminergic cell line, derived from substantia nigra of an adult rat. The formation of a Cu-dopamine complex was accompanied by oxidation of dopamine to aminochrome. We found that the Cu-dopamine complex mediates the uptake of (64)CuSO(4) into the Raúl Caviedes substantia nigra-clone 3 (RCSN3) cells, and it is inhibited by the addition of excess dopamine (2 m M) (63%, p < 0.001) and nomifensine (2 microM) (77%, p < 0.001). Copper sulfate (1 m M) alone was not toxic to RCSN-3 cells, but was when combined with dopamine or with dicoumarol (95% toxicity; p < 0.001) which inhibits DPNH and TPNH (DT)-diaphorase. Electron spin resonance (ESR) spectrum of the 5,5-dimethylpyrroline-N-oxide (DMPO) spin trap adducts showed the presence of a C-centered radical when incubating cells with dopamine, CuSO(4) and dicoumarol. A decrease in the expression of CuZn-superoxide dismutase and glutathione peroxidase mRNA was observed when RCSN-3 cells were treated with CuSO(4), dopamine, or CuSO(4) and dopamine. However, the mRNA expression of glutathione peroxidase remained at control levels when the cells were treated with CuSO(4), dopamine and dicoumarol. The regulation of catalase was different since all the treatments with CuSO(4) increased the expression of catalase mRNA. Our results suggest that copper neurotoxicity is dependent on: (i) the formation of Cu-dopamine complexes with concomitant dopamine oxidation to aminochrome; (ii) dopamine-dependent Cu uptake; and (iii) one-electron reduction of aminochrome.  相似文献   

20.
ABSTRACT

Antioxidant enzymes are essential proteins that maintain cell proliferation potential by protecting against oxidative stress. They are present in many organisms including harmful algal bloom (HAB) species. We previously identified the antioxidant enzyme 2-Cys peroxiredoxin (PRX) in the raphidophyte Chattonella marina. This enzyme specifically decomposes a hydrogen peroxide (H2O2). PRX is the only antioxidant enzyme so far identified in C. marina. This study used mRNA-seq, using Trinity assemble and blastx for annotation, to identify a further five antioxidant enzymes from C. marina: Cu Zn superoxide dismutase (Cu/Zn-SOD), glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX) and thioredoxin (TRX). In the gene expression analysis of six enzymes (Cu/Zn-SOD, GPX, CAT, APX, TRX and PRX) using light-acclimated (100 μmol photons m?2 s?1) C. marina cells, only PRX gene expression levels were significantly increased by strong light irradiation (1000 μmol photons m?2 s?1). H2O2 concentration and scavenging activity were also increased and significantly positively correlated with PRX gene expression levels. In dark-acclimated cells, expression levels of all antioxidant enzymes except APX were significantly increased by light irradiation (100 μmol photons m?2 s?1). Expression decreased the following day, with the exception of PRX expression. With the exception of CAT, gene expression of antioxidant enzymes was not significantly induced by artificial H2O2 treatment, although average gene expression levels were slightly increased in some enzymes. Thus, we suggest that light is the main trigger of gene expression, but the resultant oxidative stress is also a possible factor affecting the gene expression of antioxidant enzymes in C. marina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号