首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior studies on preferences of native herbivores for native or exotic plants have tested both the enemy release hypothesis and the biotic resistance hypothesis and have reported inconsistent results. The different levels of resistance of native and exotic plants to native herbivores could resolve this controversy, but little attention has been paid to this issue. In this study, we investigated population performance, photosynthesis, leaf nitrogen concentration, and the constitutive and induced resistances of the successful invasive plant, Alternanthera philoxeroides, and its native congener, Alternanthera sessilis, in the presence of three population densities of the grasshopper, Atractomorpha sinensis. When the grasshopper was absent, leaf biomass, total biomass, photosynthesis, and leaf nitrogen concentration of A. philoxeroides were higher than those of A. sessilis. However, the morphological and physiological performances of A. philoxeroides were all decreased more intensively than A. sessilis after herbivory by grasshoppers. Especially as the concentrations of constitutive lignin and cellulose in leaf of A. philoxeroides were higher than A. sessilis, A. philoxeroides exhibited increased leaf lignin concentration to reduce its palatability only at severe herbivore load, whereas, leaf lignin, cellulose, and polyphenolic concentrations of A. sessilis all increased with increasing herbivory pressure, and cellulose and polyphenolic concentrations were higher in A. sessilis than in A. philoxeroides after herbivory. Our study indicated that the capability of the invasive plant to respond to native insect damage was lower than the native plant, and the invasive plant was suppressed more intensively than its native congener by the native insect. Our results support the biotic resistance hypothesis and suggest that native herbivores can constrain the abundance and reduce the adverse effects of invasive species.  相似文献   

2.
比较温度对入侵种喜旱莲子草(Alternantheraphiloxeroides(Mart.)Griseb.)和其本土近缘种莲子草(A.sessilis(L.)DC.)的营养生长、叶片光合作用及叶绿素荧光的影响。实验将生长均衡的这两种植物放在不同温度(10℃、15℃、20℃、25℃、30℃)的光照培养箱中处理28d。结果表明,喜旱莲子草营养生长的速率和对温度的响应明显不同于莲子草:前者主茎生长的有效积温明显低于后者,分别是11.6d℃和27.0d℃;而新叶萌发的有效积温高于后者,分别是12.1d℃和6.7d℃。入侵种主茎和叶的发育起点温度都比本土种低,分别是10.4℃、11.0℃和12.8℃、14.9℃,表明喜旱莲子草的发育对低温反应不及莲子草敏感。对两种植物叶片的光合作用和叶绿素荧光的测定结果还表明:入侵种比本土种有较高的最大净光合速率和光饱和点,尤其在25℃时;10-30℃的温度范围内喜旱莲子草的最大光化学效率Fv/Fm没有显著变化,而莲子草在10℃低温条件下Fv/Fm值显著降低。较快的主茎生长速率、较宽的温度适应范围以及较高的光合能力可能使喜旱莲子草比本地种具有更强的竞争力,从而在其入侵过程中起了重要作用。  相似文献   

3.
喜旱莲子草(Alternanthera philoxeroides(Mart.)Griseb.)能成功入侵不同水陆生境,而其同属近缘种莲子草(A.sessilis(Linn.)DC.)适于生长在潮湿的陆地环境中。为揭示两物种生态幅差异的机理及与其入侵潜力的关系,我们在模拟不同水陆生境的同质园环境下,比较了喜旱莲子草和莲子草的形态特征、细胞渗透势变异状况和细胞内溶质物质合成相关基因(蛋氨酸合成酶基因)的表达水平。结果表明:喜旱莲子草对环境变异更敏感,表型变异幅度更大,具有更有效的渗透势调节能力;蛋氨酸合成酶基因在喜旱莲子草进入水生环境的早期阶段表现出短暂上调的特殊表达趋势。这说明有效的细胞渗透势调节机制与喜旱莲子草对不同水陆生境的广泛适应性和较强的表型可塑性能力可能有关,从而帮助其在不同生境中成功入侵。  相似文献   

4.
  • Highly biodiversity communities have been shown to better resist plant invasions through complementarity effects. Species richness (SR) is a widely used biodiversity metric but lacks explanatory power when there are only a few species. Communities with low SR can have a wide variety of phylogenetic diversities (PD), which might allow for a better prediction of invasibility.
  • We assessed the effect of diversity reduction of a wetland community assemblage typical of the Beijing area on biotic resistance to invasion of the exotic weed Alternanthera philoxeroides and compared the reduction in SR and PD in predicting community invasibility.
  • The eight studied resident species performed similarly when grown alone and when grown in eight‐species communities together with the invasive A. philoxeroides. Variation partitioning showed that PD contributed more to variation in both A. philoxeroides traits and community indicators than SR. All A. philoxeroides traits and community indicators, except for evenness index, showed a linear relationship with PD. However, only stem length of A. philoxeroides differed between the one‐ and two‐species treatments, and the diversity index of the communities differed between the one‐ and two‐species treatments and between the one‐ and four‐species treatments.
  • Our results showed that in natural or semi‐natural wetlands with relatively low SR, PD may be a better predictor of invasibility than SR. When designing management strategies for mitigating A. philoxeroides invasion, deliberately raising PD is expected to be more efficient than simply increasing species number.
  相似文献   

5.
Recurrent water level fluctuation and submergence of plants are common in riparian zones. Our study objectives were to test the independent and interactive effects of submergence level and fluctuation frequency on a globally important riparian invasive plant, Alternanthera philoxeroides. To this end, we conducted a greenhouse experiment, in which ramets of the plants, obtained from a wetland in China, were treated with four fluctuation frequencies (0, 3, 6, and 12 cycles over a 96-day experimental period) under three water levels (0, 10, and 30 cm). We found that effects of fluctuation frequency were non-significant, negative, and positive under water levels of 0, 10 and 30 cm, respectively. As fluctuation frequency increased, the effects of increasing water level decreased significantly. When water levels were high, A. philoxeroides allocated greater biomass to shoot production probably in order to elongate and escape from submergence. However, as fluctuation frequency increased, biomass investment in roots and leaves also increased, probably in order to maximize nutrient absorption and photosynthesis, respectively. These results suggest that water level fluctuation may alleviate the effects of submergence on A. philoxeroides. In addition, A. philoxeroides showed significant phenotypic plasticity, adjusting its functional traits, such as number of nodes and leaves per stem, as well as stem diameter and pith cavity diameter, according to recurrent water level fluctuation. We conclude that A. philoxeroides may perform better in shallow water zones under conditions of disturbance that include recurrent water level fluctuation. This ability to adapt to disturbance likely promotes its growth and invasion in disturbed habitats.  相似文献   

6.
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides''s biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.  相似文献   

7.
To investigate how stem anatomical structure is linked to growth and resistance to stem‐boring insects in a herbaceous species, six populations of alligatorweed (Alternanthera philoxeroides) were grown in a common garden. Stem growth rate (GR) of A. philoxeroides and pupation rate as an estimate of resistance to a stem‐boring insect (Agasicles hygrophila) were quantified. Stem tissue mass density (TMD) was measured and stem anatomical traits were analysed on cross‐sectional areas (CSA). Stem TMD was positively correlated with resistance (i.e. negatively correlated with pupation rate) and negatively correlated with GR. Stem cortex CSA (%) and vascular bundle (VB) density (no./mm2) were positively related to stem TMD and negatively related to pupation rate. The GR was positively related to VB CSA (%) and negatively related to VB density. These results suggest that stem TMD, which results from a high fraction in cortex CSA and high VB density, is a key determinant of resistance to a stem‐boring specialist in A. philoxeroides. The high resistance of plants with higher stem TMD may partially impose a cost to plant growth.  相似文献   

8.
Soil samples were collected from three native Iowa prairies and analyzed for plant paiasitic nematodes and selected soil properties. Sites or nematodes were clustered with similarities related to habitat by a cluster analysis of site by nematode species and of nematodes by site. Some nematodes occurred in a wide range of prairie habitats, whereas others were more restricted. For example, greater numbers of Xiphinema americanum were in the low, well-drained sites than in the low wet sites or upland dry sites. Wet sites contained fewer nematodes than well-drained sites. Well-drained sites contained mainly Tylenchorhynchus maximus, Helicotylenchus pseudorobustus, and X. americanum. Wetter sites contained almost exclusively X. chambersi, H. hydrophilus, Telylenchus joctus, and an undescribed species of Tylenchorhynchus.  相似文献   

9.

Background

The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter.

Principal Findings

We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth.

Conclusions

The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future restoration projects.  相似文献   

10.
The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context.  相似文献   

11.
Alternanthera philoxeroides has successfully invaded diverse habitats with considerably various water availability, threatening biological diversity in many parts of the world. Because its genetic variation is very low, phenotypic plasticity is believed to be the primary strategy for adapting to the diverse habitats. In the present paper, we investigated the plastic changes of anatomical traits of the aerial parts of A. philoxeroides from flooding to wet then to drought habitat; the results are as follows: A. philoxeroides could change anatomical structures sensitively to adapt to water regime. As a whole, effects of water regime on structures in stem were greater than those in leaf. Except for principal vein diameter and stoma density on leaf surfaces, all other structural traits were significantly affected by water regime. Among which, cuticular wax layer, collenchyma cell wall, phloem fiber cell wall, and hair density on both leaf surfaces thickened significantly with decrease of water availability, whereas, pith cavity and vessel lumen in stem lessened significantly; wet habitat is vital for the spread of A. philoxeroides from flooding to drought habitat and vice versa, because in this habitat, it had the greatest structural variations; when switching from flooding to wet then to drought habitat, the variations of cuticular wax layer, collenchyma cell wall, phloem fiber cell wall, pith cavity area ratio, diameter of vessel lumen, and hair density on both leaf surfaces, played the most important role. These responsive variables contribute most to the adaptation of A. philoxeroides to diverse habitats with considerably various water availability.  相似文献   

12.
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.  相似文献   

13.
Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.  相似文献   

14.
15.
Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.  相似文献   

16.
17.

Background

Carriage of and infection with Streptococcus pneumoniae is known to predominantly induce T helper 17 (Th17) responses in humans, but the types of Th cells showing reactivity towards commensal streptococci with low pathogenic potential, such as the oral commensals S. mitis and S. salivarius, remain uncharacterized.

Methods

Memory CD4+ T helper (Th) cell subsets were isolated from healthy human blood donors according to differential expression of chemokine receptors, expanded in vitro using polyclonal stimuli and characterized for reactivity against different streptococcal strains.

Results

Th cells responding to S. mitis, S. salivarius and S. pneumoniae were predominantly in a CCR6+CXCR3+ subset and produced IFN-γ, and in a CCR6+CCR4+ subset and produced IL-17 and IL-22. Frequencies of S. pneumoniae-reactive Th cells were higher than frequencies of S. mitis- and S. salivarius-specific Th cells. S. mitis and S. pneumoniae isogenic capsule knock-out mutants and a S. mitis mutant expressing the serotype 4 capsule of S. pneumoniae showed no different Th cell responses as compared to wild type strains. S. mitis-specific Th17 cells showed cross-reactivity with S. pneumoniae.

Conclusions

As Th17 cells partly control clearance of S. pneumoniae, cross-reactive Th17 cells that may be induced by commensal bacterial species may influence the immune response, independent of capsule expression.  相似文献   

18.
19.
Chilling (0–18°C) and freezing (<0°C) are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation) mediates the adaptation to cold stresses in nature (e.g., in alpine regions). Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h). To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling) and -4°C (freezing) over five periods of time (0–24 h). Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h). Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana to adapt to the intricate cold stresses in the alpine areas.  相似文献   

20.
Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galβ1–3GlcNAc) and lactose. We have previously identified LNBase activity in Bifidobacterium bifidum and some strains of Bifidobacterium longum subsp. longum (B. longum). Subsequently, we isolated a glycoside hydrolase family 20 (GH20) LNBase from B. bifidum; however, the genome of the LNBase+ strain of B. longum contains no GH20 LNBase homolog. Here, we reveal that locus tags BLLJ_1505 and BLLJ_1506 constitute LNBase from B. longum JCM1217. The gene products, designated LnbX and LnbY, respectively, showed no sequence similarity to previously characterized proteins. The purified enzyme, which consisted of LnbX only, hydrolyzed via a retaining mechanism the GlcNAcβ1–3Gal linkage in lacto-N-tetraose, lacto-N-fucopentaose I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc), and sialyllacto-N-tetraose a (Neu5Acα2–3Galβ1–3GlcNAcβ1–3Galβ1–4Gal); the latter two are not hydrolyzed by GH20 LNBase. Among the chromogenic substrates examined, the enzyme acted on p-nitrophenyl (pNP)-β-lacto-N-bioside I (Galβ1–3GlcNAcβ-pNP) and GalNAcβ1–3GlcNAcβ-pNP. GalNAcβ1–3GlcNAcβ linkage has been found in O-mannosyl glycans of α-dystroglycan. Therefore, the enzyme may serve as a new tool for examining glycan structures. In vitro refolding experiments revealed that LnbY and metal ions (Ca2+ and Mg2+) are required for proper folding of LnbX. The LnbX and LnbY homologs have been found only in B. bifidum, B. longum, and a few gut microbes, suggesting that the proteins have evolved in specialized niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号