首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

EV71 is one of major etiologic causes of hand-foot-mouth disease (HFMD) and leads to severe neurological complications in young children and infants. Recently inactivated EV71 vaccines have been developed by five manufactures and clinically show good safety and immunogenicity. However, the cross-neutralizing activity of these vaccines remains unclear, and is of particular interest because RNA recombination is seen more frequently in EV71 epidemics.

Methodology/Principal Findings

In this post-hoc study, sera from a subset of 119 infants and children in two clinical trials of EV71 subgenotype C4 vaccines (ClinicalTrials.gov Identifier: NCT01313715 and NCT01273246), were detected for neutralizing antibody (NTAb) titres with sera from infected patients as controls. Cytopathogenic effect method was employed to test NTAb against EV71 subgenotype B4, B5, C2, C4 and C5, which were prominent epidemic strains worldwide over the past decade. To validate the accuracy of the results, ELISpot assay was employed in parallel to detect NTAb in all the post-vaccine sera. After two-dose vaccination, 49 out of 53 participants in initially seronegative group and 52 out of 53 participants in initially seropositive group showed less than 4-fold differences in NTAb titers against five EV71 strains, whereas corresponding values among sera from pediatric patients recovering from EV71-induced HFMD and subclinically infected participants were 8/8 and 41/43, respectively. The geometric mean titers of participants against five subgenotypes EV71 all grew significantly after vaccinations, irrespective of the baseline NTAb titer. The relative fold increase in antibody titers (NTAb-FI) against B4, B5, C2, and C5 displayed a positive correlation to the NTAb-FI against C4.

Conclusions/Significance

The results demonstrated broad cross-neutralizing activity induced by two C4 EV71 vaccines in healthy Chinese infants and children. However, the degree of induced cross-protective immunity, and the potential escape evolution for EV71 still need to be monitored and researched in future for these new vaccines.  相似文献   

2.
Current human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs)-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17–36 epitope (E3) and a modified human IgG1 Fc scaffold (R4) induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development.  相似文献   

3.
4.
CY Wu  YC Yeh  JT Chan  YC Yang  JR Yang  MT Liu  HS Wu  PW Hsiao 《PloS one》2012,7(8):e42363
The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA(2) after viral infection. As a result, H5M2eN1-VLP vaccination elicited a broad humoral immune response against multiple viral proteins and caused significant protection against homologous RG-14 (H5N1) and heterologous A/California/07/2009 H1N1 (CA/07) and A/PR/8/34 H1N1 (PR8) viral lethal challenges. Moreover, the N1-VLP (lacking HA) induced production of a strong NA antibody that also conferred significant cross protection against H5N1 and heterologous CA/07 but not PR8, suggesting the protection against N1-serotyped viruses can be extended from avian-origin to CA/07 strain isolated in humans, but not to evolutionally distant strains of human-derived. By comparative vaccine study of an HA-based VLP (H5N1-VLP) and NA-based VLPs, we found that H5N1-VLP vaccination induced specific and strong protective antibodies against the HA(1) subunit of H5, thus restricting the breadth of cross-protection. In summary, we present a feasible example of direction of VLP vaccine immunity toward NA and HA(2), which resulted in cross protection against both seasonal and pandemic influenza strains, that could form the basis for future design of a better universal vaccine.  相似文献   

5.
Virosomal vaccines were prepared by extracting hemagglutinin (HA) and neuraminidase from influenza virus and incorporating it in the membranes of liposomes composed of phosphatidylcholine. Two intranasal spray vaccine series were prepared: one series comprised 7.5 micrograms of HA of each of three strains recommended by the World Health Organization and 1 microgram of Escherichia coli heat-labile toxin (HLT), and the other contained the HA without HLT. In addition, a third vaccine preparation contained 15 micrograms of HA and 2 micrograms of HLT. The parenteral virosomal vaccine contained 15 micrograms of HA without additional adjuvant. The immunogenicity of a single spray vaccination (15 micrograms of HA and 2 micrograms of HLT) was compared with that of two vaccinations (7.5 micrograms of HA with or without 1 microgram of HLT) with an interval of 1 week in 60 healthy working adults. Twenty volunteers received one parenteral virosomal vaccine. Two nasal spray vaccinations with HLT-adjuvanted virosomal influenza vaccine induced a humoral immune response which was comparable to that with a single parenteral vaccination. A significantly higher induction of influenza virus-specific immunoglobulin A was noted in the saliva after two nasal applications. The immune response after a single spray vaccination was significantly lower. It could be shown that the use of HLT as a mucosal adjuvant is necessary to obtain a humoral immune response comparable to that with parenteral vaccination. All vaccines were well tolerated.  相似文献   

6.

Background

We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B''/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers.

Methodology/Principal Findings

ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1×107 (low), 5×107 (mid), or 2.5×108 pfu (high)] volunteers were randomized in a 3∶1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNγ ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA.ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNγ ELISpot response rate to any HIV antigen was 0/12 (0%) in the placebo group, 3/12 (25%) in the low dosage group, 6/12 (50%) in the mid dosage group, and 8/13 (62%) in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%), 8/13 (62%), 6/12 (50%) and 10/13 (77%) in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement with the ability to neutralize HIV-1 SF162 in vitro. Two volunteers mounted antibodies that were able to neutralize clade-matched viruses.

Conclusions/Significance

ADMVA was well-tolerated and elicited durable humoral and cellular immune responses.

Trial Registration

Clinicaltrials.gov NCT00252148  相似文献   

7.

Background

We conducted a Phase I dose escalation trial of ADVAX, a DNA-based candidate HIV-1 vaccine expressing Clade C/B'' env, gag, pol, nef, and tat genes. Sequences were derived from a prevalent circulating recombinant form in Yunnan, China, an area of high HIV-1 incidence. The objective was to evaluate the safety and immunogenicity of ADVAX in human volunteers.

Methodology/Principal Findings

ADVAX or placebo was administered intramuscularly at months 0, 1 and 3 to 45 healthy volunteers not at high risk for HIV-1. Three dosage levels [0.2 mg (low), 1.0 mg (mid), and 4.0 mg (high)] were tested. Twelve volunteers in each dosage group were assigned to receive ADVAX and three to receive placebo in a double-blind design. Subjects were followed for local and systemic reactogenicity, adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA. Cellular immunogenicity was assessed by a validated IFNγ ELISpot assay and intracellular cytokine staining. ADVAX was safe and well-tolerated, with no vaccine-related serious adverse events. Local and systemic reactogenicity events were reported by 64% and 42% of vaccine recipients, respectively. The majority of events were mild. The IFNγ ELISpot response rates to any HIV antigen were 0/9 (0%) in the placebo group, 3/12 (25%) in the low-dosage group, 4/12 (33%) in the mid-dosage group, and 2/12 (17%) in the high-dosage group. Overall, responses were generally transient and occurred to each gene product, although volunteers responded to single antigens only. Binding antibodies to gp120 were not detected in any volunteers, and HIV seroconversion did not occur.

Conclusions/Significance

ADVAX delivered intramuscularly is safe, well-tolerated, and elicits modest but transient cellular immune responses.

Trial Registration

Clinicaltrials.gov NCT00249106  相似文献   

8.
Group B Streptococcus (GBS), a commensal organism, can turn into a life-threatening pathogen in neonates and elderly, or in adults with severe underlying diseases such as diabetes. We developed a vaccine targeting the GBS glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme detected at the bacterial surface, which was proven to be effective in a neonatal mouse model of infection. Since this bacterium has emerged as an important pathogen in non-pregnant adults, here we investigated whether this vaccine also confers protection in an adult susceptible and in a diabetic mouse model of infection. For immunoprotection studies, sham or immunized adult mice were infected with GBS serotype Ia and V strains, the two most prevalent serotypes isolated in adults. Sham and vaccinated mice were also rendered diabetic and infected with a serotype V GBS strain. For toxicological (pre-clinical) studies, adult mice were vaccinated three times, with three concentrations of recombinant GAPDH adjuvanted with Allydrogel, and the toxicity parameters were evaluated twenty-four hours after the last immunization. For the stability tests, the vaccine formulations were maintained at 4°C for 6 and 12 months prior immunization. The results showed that all tested doses of the vaccine, including the stability study formulations, were immunogenic and that the vaccine was innocuous. The organs (brain, blood, heart, and liver) of vaccinated susceptible or diabetic adult mice were significantly less colonized compared to those of control mice. Altogether, these results demonstrate that the GAPDH-based vaccine is safe and stable and protects susceptible and diabetic adult mice against GBS infections. It is therefore a promising candidate as a global vaccine to prevent GBS-induced neonatal and adult diseases.  相似文献   

9.
10.
With the ongoing pandemic of influenza A (H1N1) virus infection and the threat of high fatality rates for recent human cases of infection with highly pathogenic H5N1 strains, there has been considerable interest in developing pandemic vaccines. Here we report a randomized multicenter dose-finding clinical trial of a whole-virion, inactivated, adjuvanted H5N1 vaccine in adult and elderly volunteers. Four hundred eighty patients were randomly assigned to receive one or two doses of 3.5 μg of the vaccine or one dose of 6 or 12 μg. The subjects were monitored for safety analysis, and serum samples were obtained to assess immunogenicity by hemagglutination inhibition and microneutralization tests. The subjects developed antibody responses against the influenza A (H5N1) virus. Single doses of ≥6 μg fulfilled EU and U.S. licensing criteria for interpandemic and pandemic influenza vaccines. Except for occasional injection site pain, malaise, and fever, no adverse events were observed. We found that the present vaccine is safe and immunogenic in healthy adult and elderly subjects and requires low doses and, unlike any other H5N1 vaccines, only one injection to trigger immune responses which comply with licensing criteria. A vaccine using the same methods as those described in this report, but based on a wild-type swine-origin 2009 (H1N1) influenza A virus isolate from the United States (supplied by the CDC), has been developed and is currently being tested by our group.With the ongoing pandemic of influenza A (H1N1) virus infection and the threat of high fatality rates for recent human cases of infection with highly pathogenic H5N1 strains, there has been considerable interest in developing pandemic influenza vaccines.With new cases continuing to emerge, as of June 2009, the avian influenza A (H5N1) virus subtype has caused 433 human infections in 15 countries, as confirmed by the World Health Organization (WHO), resulting in severe illness with a high fatality rate (30). Human-to-human spread has been strongly suspected and even evidenced by statistical methods (22, 33). With new human infections continuing to develop, this subtype continues to represent a potential source of an influenza pandemic (33).Mass vaccination is the most effective approach to reduce illness and death from pandemic influenza. Therefore, vaccine producers are currently developing and assessing vaccines against H5N1 viruses (2, 14, 31). The effects of split, subvirion, and whole-virion H5N1 vaccines have been tested, with various immunogenicity results (31). Three whole-virion vaccines have been tested so far, two of which required two-dose regimens (4, 14), while a one-dose regimen with the present vaccine was found to be immunogenic in 146 adult subjects (24).The objective of the present study was to determine the safety and immunogenicity of an inactivated whole-virion vaccine against influenza A/Vietnam/1194/2004, using multiple dosing and administration schedules, for adult and elderly subjects. To date, this is the only influenza pandemic prototype vaccine trial examining single-dose regimens in elderly patients.  相似文献   

11.
Cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the hepatitis C virus polyprotein requires a viral serine protease activity residing in the N-terminal one-third of the NS3 protein. Sequence comparison of the residues flanking these cleavage sites reveals conserved features including an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position. In this study, we used site-directed mutagenesis to assess the importance of these and other residues for NS3 protease-dependent cleavages. Substitutions at the P7 to P2' positions of the 4A/4B site had varied effects on cleavage efficiency. Only Arg at the P1 position or Pro at P1' substantially blocked processing at this site. Leu was tolerated at the P1 position, whereas five other substitutions allowed various degrees of cleavage. Substitutions with positively charged or other hydrophilic residues at the P7, P3, P2, and P2' positions did not reduce cleavage efficiency. Five substitutions examined at the P6 position allowed complete cleavage, demonstrating that an acidic residue at this position is not essential. Parallel results were obtained with substrates containing an active NS3 protease domain in cis or when the protease domain was supplied in trans. Selected substitutions blocking or inhibiting cleavage at the 4A/4B site were also examined at the 3/4A, 4B/5A, and 5A/5B sites. For a given substitution, a site-dependent gradient in the degree of inhibition was observed, with a 3/4A site being least sensitive to mutagenesis, followed by the 4A/4B, 4B/5A, and 5A/5B sites. In most cases, mutations abolishing cleavage at one site did not affect processing at the other serine protease-dependent sites. However, mutations at the 3/4A site which inhibited cleavage also interfered with processing at the 4B/5A site. Finally, during the course of these studies an additional NS3 protease-dependent cleavage site has been identified in the NS4B region.  相似文献   

12.
A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of highly pathogenic (HP) A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (H2N2) virus. The reassortant H7N7 NL/03 ca vaccine virus was temperature sensitive and attenuated in mice, ferrets, and African green monkeys (AGMs). Intranasal (i.n.) administration of a single dose of the H7N7 NL/03 ca vaccine virus fully protected mice from lethal challenge with homologous and heterologous H7 viruses from Eurasian and North American lineages. Two doses of the H7N7 NL/03 ca vaccine induced neutralizing antibodies in serum and provided complete protection from pulmonary replication of homologous and heterologous wild-type H7 challenge viruses in mice and ferrets. One dose of the H7N7 NL/03 ca vaccine elicited an antibody response in one of three AGMs that was completely protected from pulmonary replication of the homologous wild-type H7 challenge virus. The contribution of CD8+ and/or CD4+ T cells to the vaccine-induced protection of mice was evaluated by T-cell depletion; T lymphocytes were not essential for the vaccine-induced protection from lethal challenge with H7 wt viruses. Additionally, passively transferred neutralizing antibody induced by the H7N7 NL/03 ca virus protected mice from lethality following challenge with H7 wt viruses. The safety, immunogenicity, and efficacy of the H7N7 NL/03 ca vaccine virus in mice, ferrets, and AGMs support the evaluation of this vaccine virus in phase I clinical trials.Highly pathogenic avian influenza (HPAI) is a disease of poultry that is caused by H5 or H7 avian influenza viruses and is associated with up to 100% mortality (2). Influenza A H7 subtype viruses from both Eurasian and North American lineages have resulted in more than 100 cases of human infection since 2002 in the Netherlands, Italy, Canada, the United Kingdom, and the United States. These cases include outbreaks of HPAI H7N7 virus in the Netherlands in 2003 that resulted in more than 80 cases of human infection and one fatality; HPAI H7N3 virus in British Columbia, Canada, in 2004 that resulted in two cases of conjunctivitis; a cluster of human infections of low-pathogenicity avian influenza (LPAI) H7N2 virus in the United Kingdom in 2007 that resulted in several cases of influenza-like illness and conjunctivitis; and a single case of respiratory infection in New York in 2003 (3-6, 17, 27).Due to an unprecedented geographic spread of H5 subtype viruses since 2003 and the continued occurrence of sporadic cases of H5N1 infections in humans, much emphasis has been placed on the pandemic threat posed by H5 subtype viruses. However, H7 subtype viruses also have significant pandemic potential. Humans are immunologically naïve to the H7 avian influenza viruses (16), and LPAI H7 subtype viruses circulating in domestic poultry and wild birds in Eurasia and North America have the potential to evolve and acquire an HP phenotype either by accumulating mutations or by recombination at the hemagglutinin (HA) cleavage site resulting in a highly cleavable HA that is a virulence motif in poultry (30, 33, 34). Recent work also suggests that contemporary North American lineage H7 subtype viruses, isolated in 2002 to 2003, are partially adapted to recognize α2-6-linked sialic acids, which are the receptors preferred by human influenza viruses and are preferentially found in the human upper respiratory tract (7). Moreover, coinfection and genetic reassortment of RNA genomes between H7 avian influenza viruses and human influenza viruses, including the seasonal H1N1 and H3N2 and pandemic H1N1 viruses, could result in the generation of reassortant viruses with the capacity to efficiently transmit among people and result in a pandemic. Domesticated birds may serve as important intermediate hosts for the transmission of wild-bird influenza viruses to humans, as may pigs, as evidenced by human infections with swine-origin 2009 pandemic H1N1 influenza virus throughout the world.Vaccination is the most effective method for the prevention of influenza. However, technical limitations result in delays in the rapid generation and availability of a strain-specific vaccine against an emerging pandemic virus. The emergence of antigenically distinct virus clades poses a substantial challenge for the design of vaccines against H5N1 viruses because of the possible need for clade-specific vaccines (1). Similar challenges are present for the generation of H7 subtype vaccine candidates, because antigenically distinct H7 subtype viruses, including North American lineage H7N2 and H7N3 and Eurasian lineage H7N7 and H7N3 viruses, have caused human disease. The successful control of H7 influenza virus in poultry has been achieved by stamping out and by vaccination of poultry (9). Vaccines for human use against both lineages of H7 influenza virus are under development, and candidate vaccines have been evaluated in preclinical and clinical studies (14, 23, 29, 42).We have previously analyzed the antigenic relatedness among H7 viruses from Eurasian and North American lineages using postinfection mouse and ferret sera (22). Among 10 H7 viruses tested, A/Netherlands/219/03 (H7N7) virus induced the most broadly cross-neutralizing antibodies (Abs) (22). Based on the phylogenetic relationships and its ability to induce broadly cross-neutralizing antibodies in mice and ferrets, we selected the A/Netherlands/219/03 (NL/03) (H7N7) virus from the Eurasian lineage for vaccine development. We used reverse genetics to generate a live attenuated cold-adapted (ca) H7N7 candidate vaccine virus bearing a modified HA, a wild-type (wt) neuraminidase (NA) gene from the NL/03 wt virus, and the six internal protein gene segments from the cold-adapted (ca) influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (AA ca) (H2N2). The immunogenicity and protective efficacy against challenge with HP and LP H7 viruses from the Eurasian and North American lineages of the reassortant H7N7 NL03/AA ca vaccine virus were evaluated in mice, ferrets, and African green monkeys (AGMs).  相似文献   

13.
In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO4 or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.  相似文献   

14.
Broadly neutralizing antibodies are considered an important part of a successful HIV vaccine. A better understanding of the factors underlying their development during infection and of the epitopes they target is needed to elicit similar antibody responses by vaccination. We and others reported that, on average, it takes 2 to 3 years for cross-reactive neutralizing antibodies to become detectable in the sera of HIV-1-infected subjects and that they target a limited number of epitopes on the HIV Envelope. Here we investigated the emergence and evolution of the earliest cross-reactive neutralizing antibody specificities in one HIV-1-infected individual, AC053. We defined two distinct epitopes on Env that are targeted by the broadly neutralizing antibody responses developed by AC053. The first specificity became evident at 3 years post infection and targeted the CD4-binding site of Env. Antibodies responsible for that specificity neutralized most, but not all, viruses susceptible to neutralization by the plasma antibodies of AC053. The second specificity became apparent approximately a year later. It was due to PG9-like antibodies, which were able to neutralize those viruses not susceptible to the anti-CD4-BS antibodies in AC053. These findings improve our understanding of the co-development of broadly neutralizing antibodies that target more than one epitope during natural HIV-1-infection in selected HIV+ subjects. They support the hypothesis that developing broadly neutralizing antibody responses targeting distinct epitopes by immunization could be feasible.  相似文献   

15.
16.
陈则  方芳 《生命科学研究》2000,4(3):189-196
20世纪人类遭受了4次流感大流行,数千万人失去了生命,流感病毒分A、B、C三型,对其病毒学、流行病学和临床特征,以及流感病毒传统疫苗--灭活疫苗和新型疫苗--核酸疫苗的研究进展作了论述。  相似文献   

17.
A Phase I trial conducted in 2009–2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.  相似文献   

18.

Study Design

A randomized, double-blind, placebo controlled phase I trial.

Methods

The trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of prime-boost vaccination regimens with either 2 doses of ADVAX, a DNA vaccine containing Chinese HIV-1 subtype C env gp160, gag, pol and nef/tat genes, as a prime and 2 doses of TBC-M4, a recombinant MVA encoding Indian HIV-1 subtype C env gp160, gag, RT, rev, tat, and nef genes, as a boost in Group A or 3 doses of TBC-M4 alone in Group B participants. Out of 16 participants in each group, 12 received vaccine candidates and 4 received placebos.

Results

Both vaccine regimens were found to be generally safe and well tolerated. The breadth of anti-HIV binding antibodies and the titres of anti-HIV neutralizing antibodies were significantly higher (p<0.05) in Group B volunteers at 14 days post last vaccination. Neutralizing antibodies were detected mainly against Tier-1 subtype B and C viruses. HIV-specific IFN-γ ELISPOT responses were directed mostly to Env and Gag proteins. Although the IFN-γ ELISPOT responses were infrequent after ADVAX vaccinations, the response rate was significantly higher in group A after 1st and 2nd MVA doses as compared to the responses in group B volunteers. However, the priming effect was short lasting leading to no difference in the frequency, breadth and magnitude of IFN-γELISPOT responses between the groups at 3, 6 and 9 months post-last vaccination.

Conclusions

Although DNA priming resulted in enhancement of immune responses after 1st MVA boosting, the overall DNA prime MVA boost was not found to be immunologically superior to homologous MVA boosting.

Trial Registration

Clinical Trial Registry CTRI/2009/091/000051  相似文献   

19.

Background

Acellular pertussis vaccines do not control pertussis. A new approach to offer protection to infants is necessary. BPZE1, a genetically modified Bordetella pertussis strain, was developed as a live attenuated nasal pertussis vaccine by genetically eliminating or detoxifying 3 toxins.

Methods

We performed a double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally for the first time to human volunteers, the first trial of a live attenuated bacterial vaccine specifically designed for the respiratory tract. 12 subjects per dose group received 103, 105 or 107 colony-forming units as droplets with half of the dose in each nostril. 12 controls received the diluent. Local and systemic safety and immune responses were assessed during 6 months, and nasopharyngeal colonization with BPZE1 was determined with repeated cultures during the first 4 weeks after vaccination.

Results

Colonization was seen in one subject in the low dose, one in the medium dose and five in the high dose group. Significant increases in immune responses against pertussis antigens were seen in all colonized subjects. There was one serious adverse event not related to the vaccine. Other adverse events were trivial and occurred with similar frequency in the placebo and vaccine groups.

Conclusions

BPZE1 is safe in healthy adults and able to transiently colonize the nasopharynx. It induces immune responses in all colonized individuals. BPZE1 can thus undergo further clinical development, including dose optimization and trials in younger age groups.

Trial Registration

ClinicalTrials.gov NCT01188512  相似文献   

20.
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号