首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Available treatment for Parkinson’s disease (PD) is mainly symptomatic instead of halting or reversing degenerative processes affecting the disease. Research on the molecular pathogenesis of PD has suggested reduced trophic support as a possible cause or mediator of neurodegeneration. In animal models of the disease, neurotrophic factors prevent neurodegeneration and induce behavioral recovery. Some anti-Parkinsonian drugs show neuroprotective activity, but it is not known whether the drug-induced neuroprotection is mediated by neurotrophic factors. In this study, we have investigated the influence of two neuroprotective anti-Parkinsonian drugs, the monoamine oxidase B inhibitor selegiline and the adenosine A2A antagonist SCH 58261, on the levels of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) in the mouse brain. Protein levels of BDNF and CDNF were quantified by western blot after 2 weeks of treatment with either of the drugs or placebo. CDNF levels were not significantly influenced by selegiline or SCH 58261 in any brain area studied. Selegiline treatment significantly increased BDNF levels in the anterior cingulate cortex (1.55 ± 0.22, P < 0.05, Student’s t-test). In the striatum, selegiline increased BDNF content by 32%, but this change did not reach statistical significance (1.32 ± 0.15, P < 0.13, Student’s t-test). Our data suggest that neurotrophic factors, particularly BDNF may play a role in the neuroprotective effects of selegiline, but do not support the hypothesis that anti-Parkinsonian drugs would work by increasing the levels of CDNF in brain.  相似文献   

2.
Mammalian nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are members of a protein family with perfectly conserved domains arranged around the cysteine residues thought to stabilize an invariant three-dimensional scaffold in addition to distinct sequence motifs that convey different neuronal functions. To study their structural and functional conservation during evolution, we have compared NGF and BDNF from a lower vertebrate, the teleost fish Xiphophorus, with the mammalian homologues. Genomic clones encoding fish NGF and BDNF were isolated by cross-hybridization using probes from the cloned mammalian factors. Fish NGF and BDNF were expressed by means of recombinant vaccinia viruses, purified, and their neuronal survival specificities for different classes of neurons were found to mirror those of the mammalian factors. The half-maximal survival concentration for chick sensory neurons was 60 pg/ml for both fish and mammalian purified recombinant BDNF. However, the activity of recombinant fish NGF on both chick sensory and sympathetic neurons was 6 ng/ml, 75-fold lower than that of mouse NGF. The different functional conservation of NGF and BDNF is also reflected in their structures. The DNA-deduced amino acid sequences of processed mature fish NGF and BDNF showed, compared to mouse, 63% and 90% identity, respectively, indicating that NGF had reached an optimized structure later than BDNF. The retrograde extrapolation of these data indicates that NGF and BDNF evolved at strikingly different rates from a common ancestral gene about 600 million years ago. By RNA gel blot analysis NGF mRNA was detected during late embryonic development; BDNF was present in adult brain.  相似文献   

3.
Dorsal root ganglia from 8-day chick embryos can be stimulated to extend nerve processes in culture by inclusion of cytosine arabinoside (Ara-C) in the culture medium, in the absence of exogenous nerve growth factor (NGF). The degree of stimulation is dose dependent, and is not mimicked by either free cytosine or free arabinose. Since Ara-C is known to inhibit DNA synthesis, other inhibitors of DNA synthesis were tested. Hydroxyurea, fluorodeoxyuridine, and 3 mM thymidine all stimulated nerve outgrowth in the absence of exogenous NGF. In addition, bromodeoxyuridine also stimulated nerve outgrowth. In all cases, stimulation was observable after 24 h of culture, with maximal outgrowth achieved by 72 h of culture. The experimental response was never as large as the response to NGF, but was up to seven times greater than control outgrowth. In all cultures, nerve processes were characterized by growth cones at their distal tips, colchicine-sensitivity, and a high tubulin content visualized by immunofluorescence with anti-tubulin antibody.  相似文献   

4.
Abstract: Chick embryo dorsal root ganglia display a rapid and transient rise in their cyclic AMP content when presented with nerve growth factor. These ganglia also depend on nerve growth factor for control of their intracellular Na+ and K+ levels. A sequential relationship between the cyclic AMP and Na+ responses is not readily apparent. Incubation of chick sensory ganglia in a sodium-free medium does not prevent the cyclic AMP response to nerve growth factor from occurring. When ganglia are first incubated with ouabain for 6 h, presentation of nerve growth factor elicits a cyclic AMP response, but no Na+ response. The cyclic AMP response therefore does not depend on the Na+ environment. An initial presentation of nerve growth factor to the ganglia for 30 min, followed by its withdrawal and subsequent re-administration at different intervals over several hours failed to result in a second cyclic AMP response. Nevertheless, the expected Na+ behaviors were still observed. Dibutyryl cyclic AMP is capable of eliciting a cyclic AMP response in chick sensory ganglia after 6 h of nerve growth factor deprivation. When both agents were presented simultaneously to the ganglia, only a single cyclic AMP response was obtained, corresponding in time to the response elicited by dibutyryl cyclic AMP alone-indicating that this drug acts on the NGF-sensitive cells. At the same time dibutyryl cyclic AMP alone failed to result in a Na+ response, leading one to conclude that the cyclic AMP response to nerve growth factor is truly not mediating the Na+ response. Additional support for the mutual independence of these two short-latency responses is provided by the apparent inability of nerve growth factor to cause a cyclic AMP response in chick embryo sympathetic ganglia, another traditional target for the factor, which is capable of displaying a Na+ response.  相似文献   

5.
Abstract: The mechanism of neuroprotection by the calcium channel antagonist flunarizine against neuronal death is unknown. We investigated the ability of other calcium channel antagonists (cinnarizine, nimodipine, nicardipine, diltiazem, and verapamil), calmodulin antagonists, and calpain inhibitors to prevent neuronal death in rat dorsal root ganglion neurons in vitro after nerve growth factor (NGF) deprivation and the ability of cinnarizine and diltiazem to protect in vivo after axotomy. In vitro, only neurons treated with cinnarizine or flunarizine were protected from death after withdrawal. In vivo, cinnarizine, but not diltiazem, protected dorsal root ganglion neurons in rats after unilateral sciatic nerve crush. Intracellular calcium concentration ([Ca2+],) was evaluated with fura 2 after NGF deprivation In vitro. Neurons "committed to die" 24 h after NGF deprivation displayed a decline in [Caa+], before visible morphological deterioration consistent with cell death. The influx of extracellular calcium was not necessary to produce neuronal death. Neurons deprived of NGF gradually lost the ability to respond to elevated external potassium with an increase in [Ca2+], during the first 24 h after trophic factor deprivation. After 24 h, neurons deprived of NGF could not be rescued by readministration of NGF. Neurons protected from cell death with diphenylpiperazines maintained their response to high external potassium, suggesting continued membrane integrity. We speculate that diphenylpiperazines may protect sensory neurons via an unknown mechanism that stabilizes cell membranes.  相似文献   

6.
Abstract: The importance of individual members of the neurotrophin gene family for avian inner ear development is not clearly defined. Here we address the role of two neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), for innervation of the chicken cochlea. We have used defective herpes simplex virus type 1 (HSV-1) vectors, or amplicons, to express these neurotrophins in dissociated cultures of cochlear neurons. HSV-1-mediated expression of BDNF promotes neuronal survival similar to the maximal level seen by exogenously added BDNF and exceeds its potency to produce neurite outgrowth. In contrast, cochlear neurons transduced with an amplicon producing bioactive NGF show no response. These results confirm BDNF as an important mediator of neurotrophin signaling inside avian cochlear neurons. However, these neurons can be rendered NGF-responsive by transducing them with the high-affinity receptor for NGF, TrkA. This study underlines the usefulness of amplicons to study and modify neurotrophin signaling inside neurons.  相似文献   

7.
8.
激活素促进鸡胚神经节神经突起生长作用   总被引:4,自引:0,他引:4  
为了探讨激活素(activin)促进鸡胚背根神经节(dorsal root ganglia,DRG)突起生长、维持神经节细胞生存作用及其与一氧化氮(NO)释放的关系,实验采用8 d的鸡胚分离背根神经节,原代培养法,观察鸡胚背根神经节的体外生长情况。研究结果表明,添加激活素A培养的背根神经节有明显的神经突起生长,形成密集的网络,背根神经节可存活8~10 d;而阴性对照组几乎无神经突起生长,背根神经节可存活3~4 d。添加激活素A的背根神经节单层培养神经节细胞也可长期存活;而阴性对照组在培养第5 d几乎无神经节细胞生存。NO检测结果显示,添加激活素A培养的背根神经节上清NO分泌水平明显降低,与阴性对照组比较差异显著(P<0.05);激活素A与神经生长因子(nerve growth factor,NGF)具有协同抑制背根神经节NO分泌作用。激活素结合蛋白(follistatin)明显抑制激活素A诱导的背根神经节神经突起生长。研究结果提示,激活素可维持鸡胚神经节细胞存活并刺激神经突起生长,其作用与抑制神经损伤因子NO的释放有关。  相似文献   

9.
Abstract: A clonal cell line stably expressing trkB (TrkB/PC12) was established from rat pheochromocytoma PC12 cells. Brain-derived neurotrophic factor (BDNF), as well as nerve growth factor (NGF), stimulates neurite outgrowth in TrkB/PC12 cells. However, the morphology of BDNF-differentiated cells was clearly different from NGF-differentiated cells. BDNF treatment brought about longer and thicker neurites and induced a flattened soma and an increase in somatic size. This is not explained enough by the quantitative difference in the strength between TrkA and TrkB stimulation, because the level of BDNF-stimulated tyrosine phosphorylation of TrkB was similar to that of TrkA stimulated with NGF in PC12/TrkB cells. There was no difference in major tyrosine phosphorylated proteins induced by NGF and BDNF. Signal proteins such as phosphatidylinositol 3-kinase, phospholipase C-γ1, Shc, and mitogen-activated protein kinase seem to be involved in both TrkA- and TrkB-mediated signaling pathways. However, a tyrosine-phosphorylated 38-kDa protein (pp38) was detected in anti-pan-Trk immunoprecipitation only after NGF stimulation. Immunoprecipitation using three distinct anti-pan-Trk antibodies suggests that pp38 is not a fragment of TrkA. These data indicate that TrkA has a unique signal transduction pathway that is not stimulated through TrkB in TrkB/PC12 cells and suggest distinct functions among neurotrophin receptors.  相似文献   

10.
We have used biologically active derivatives of beta-nerve growth factor (NGF), modified by biotinylation via carboxyl groups, to target the specific binding of liposomes to cultured rat and human tumor cells bearing NGF receptors. Liposomes, to be used for targeting, were prepared by conjugating streptavidin to phospholipid amino groups on liposomes prepared by reverse-phase evaporation. Approximately 2,000 streptavidin molecules were incorporated per liposome. Addition of biotinylated NGF, but not of unmodified NGF, could mediate the subsequent binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 4 degrees C. In contrast, incubation with biotinylated NGF did not mediate the binding of hemoglobin-conjugated liposomes. Under optimal incubation conditions, approximately 570 streptavidin-liposomes were specifically bound per cell. Biotinylated NGF was also used to obtain specific binding of streptavidin-liposomes containing encapsulated fluorescein isothiocyanate-labeled dextran to PC12 cells or human melanoma HS294 cells. When HS294 cells were incubated at 37 degrees C following targeted liposome binding at 4 degrees C, the cell-associated fluorescence appeared to become internalized, displaying a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 4 degrees C but did not alter the fluorescence pattern in cells following incubation at 37 degrees C. When liposomes containing carboxyfluorescein, a dye capable of diffusing out of acidic compartments, were targeted to HS294 cells, subsequent incubation at 37 degrees C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles.  相似文献   

11.
12.
Abstract: Cell dissociates from embryonic chick dorsal root ganglia, incubated for 6 h with 22Na+, accumulated four to six times more radioactivity in the absence than in the presence of Nerve Growth Factor (NGF). The accumulation of radioactivity paralleled the external Na+ concentration, indicating that the cells may have been reaching equilibrium with the medium. Delayed presentation of NGF to 22Na+-loaded cells caused a rapid loss of radioactivity, even with extracellular 22Na+ still present, demonstrating that NGF caused an overall efflux of Na+ rather than an accelerated equilibration. The Na+ exclusion from 22Na+-loaded cells was dependent upon NGF concentration. Use of nutrient-rich medium, serum, and certain hormones and other proteins did not prevent the Na+ accumulation in the absence of NGF or its reversion by delayed NGF administration. Incubation of the ganglionic cells with ouabain or dinitrophenol during the 22Na+ loading period (no NGF) increased the rate, but not the magnitude, of loading. The same incubation carried out in a Na+-free medium and followed by 22Na+ presentation resulted in fast radioactive loading that was identical to that occurring in drug-free, NGF-deprived cells and was not prevented by presentation of NGF together with the 22Na+. These data are consistent with a model in which NGF acts through a Na+ pump rather than by restricting Na+ influxes.  相似文献   

13.
Abstract: Nerve growth factor (NGF) initiates a pleiotypic response in numerous tissues derived from the neural crest by binding to specific plasma membrane receptors. In sympathetic ganglia this receptor has been characterized as a highly asymmetric, minimally hydrophobic, intrinsic membrane protein with a molecular weight of 135,000 (Costrini et al., 1979b). To further characterize this moiety we assessed the effects of lectins on 125I-NGF specific binding to preparations of particulate and nonionic detergent-extracted micro-somal receptors of rabbit superior cervical ganglia (SCG). Concanavalin A (Con A) and wheat germ agglutinin (WGA), but not soybean agglutinin or Ulex europaeus I, induced a concentration-related, carbohydrate-specific decrease in 125T-NGF binding. Following Con A exposure, 125I-NGF specific binding to particulate SCG receptors was maximally reduced to 23% of control values. WGA similarly reduced NGF binding to particulate microsomal receptors to 37% of control values. Scatchard analysis of growth factor binding following Con A exposure indicated that this lectin effect was principally due to a sixfold reduction in maximum receptor affinity. Lectin-associated impairment of NGF binding was also demonstrated by using a Triton X-100 solubilized receptor preparation. These results provide evidence that the high-affinity-state NGF receptor of SCG is a glycoprotein containing N -acetylglucosamine and α-D-mannopyranoside residues. These residues are probably located in close proximity to the growth factor binding region of the NGF receptor.  相似文献   

14.
15.
The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.  相似文献   

16.
During development, neural crest-derived sensory neurons require nerve growth factor (NGF) for survival, but lose this dependency postnatally. Similarly, dissociated embryonic sensory neurons lose their NGF dependence during the first 3 weeks in cell culture. It has been hypothesized that, in sympathetic neurons, intracellular levels of calcium are related to trophic factor dependence. In vitro during the period in which embryonic-day-15 sensory neurons become independent of NGF, intracellular calcium concentrations progressively increased in parallel to the decline in NGF dependence. This elevation of intracellular calcium was directly related to the absolute age of the neurons, not to the length of time in culture. Without NGF, immature sensory, i.e., dependent, neurons survived in the presence of high extracellular potassium, a condition that produces elevated intracellular calcium. In another paradigm, measurements of intracellular calcium were determined in NGF-dependent neurons "committed to die" after NGF withdrawal. These measurements were determined prior to the time that extensive morphological changes, consistent with cell death, were noted by phase-contrast microscopy. No elevation in intracellular calcium was found in these dying neurons, but rather, a small decrease was observed prior to the disintegration of the neurons. These findings support the hypothesis that trophic factor dependence of neurons may be inversely related to levels of intracellular calcium.  相似文献   

17.
目的:研究坐骨神经结扎损伤后疼痛受体P2X3在相应背根神经节(dorsal root ganglia,DRG)内的表达变化情况。方法:选取健康成年SD大鼠35只,建立右侧坐骨神经结扎损伤模型,采用免疫组织化学和图像分析技术检测相应L4-6DRG内P2X3的表达情况。结果:正常大鼠L4-6DRG内有大量P2X3免疫阳性神经元,坐骨神经结扎后3d P2X3表达即下调,3,7,14,21和28d其表达呈进行性下降趋势,各时间点与正常和假手术对照比较差异均有统计学意义(P<0.05)。结论:坐骨神经结扎后P2X3在L4-6DRG内表达明显下调,提示其可能在神经源性疼痛中发挥一定的作用。  相似文献   

18.
The distribution of brain-derived neurotrophic factor was examined in the rat mesencephalic trigeminal tract nucleus after transection and crush of the masseteric nerve. In the intact mesencephalic trigeminal tract nucleus, brain-derived neurotrophic factor was detected in small cells with fine processes. These cells and processes were occasionally located adjacent to tyrosine kinase B receptor-immunoreactive sensory neurons. The transection and crush of the masseteric nerve increased expression of brain-derived neurotrophic factor in the nucleus. The number and size of brain-derived neurotrophic factor-immunoreactive cells and processes were dramatically elevated by the nerve injury. As a result, the density of brain-derived neurotrophic factor-immunoreactive profiles in the mesencephalic trigeminal tract nucleus at 7 days after the injury was significantly higher compared with the intact nucleus. Double immunofluorescence method also revealed that brain-derived neurotrophic factor-immunoreactive cells were mostly immunoreactive for OX-42 but not glial fibrillary acidic protein. In addition, the retrograde tracing method demonstrated that brain-derived neurotrophic factor-immunoreactive cells and processes surrounded retrogradely labeled neurons which showed tyrosine kinase B receptor-immunoreactivity. These findings indicate that the nerve injury increases expression of brain-derived neurotrophic factor in microglia within the mesencephalic trigeminal tract nucleus. The glial neurotrophic factor may be associated with axonal regeneration of the injured primary proprioceptor in the trigeminal nervous system.  相似文献   

19.
Primary cultures of neonatal rat cortical astrocytes contain low cellular levels (about 2 pg/mg of protein) of nerve growth factor (NGF), but secrete significant amounts of NGF into the culture medium (about 540 pg of NGF/mg of cell protein/38-h incubation). Incubation of astrocytes with interleukin-1 (IL-1) increased the cellular content of NGF and the amount secreted by about threefold. In comparison, cerebellar astrocytes secreted significant amounts of NGF, and the secretion was also stimulated by IL-1. The stimulatory action of IL-1 on astrocytes prepared from cortex was dose- and time-dependent. Concentrations of IL-1 causing half-maximal and maximal stimulation of NGF secretion were 1 and 10 U/ml, respectively). Maximal NGF secretion induced by IL-1 (10 U/ml) was seen following 38 h of incubation. The basal secretion of NGF was reduced by about 50% under Ca2(+)-free conditions; however, the percent stimulation of NGF secretion by IL-1 was the same in the absence or presence of Ca2+. The stimulatory action of IL-1 was specific, because other glial growth factors and cytokines were almost ineffective in stimulating NGF secretion from cortical astroglial cells. IL-1 treatment also increased cellular NGF mRNA content twofold. The results indicate that IL-1 specifically triggers a cascade of events, independent of cell growth, which regulate NGF mRNA content and NGF secretion by astrocytes.  相似文献   

20.
Abstract: We have recently shown that the small GTP binding protein p21 ras is essential for nerve growth factor (NGF)-mediated survival of peripheral embryonic chick dorsal root ganglia (DRG) sensory but not sympathetic neurons. To investigate at which level of the signaling cascade the pathways diverge, we have studied the time-resolved pattern of NGF-stimulated tyrosine phosphorylation of proteins within 4 h after addition of the neurotrophin. In both chick sympathetic neurons [embryonic day (E) 12] and DRG sensory neurons (E9) NGF induces within 1 min the autophosphorylation of the receptor tyrosine kinase p140trk. However, the pattern of substrate protein tyrosine phosphorylation downstream of p140trk is distinctly different in both neuronal subtypes. In sympathetic neurons, we observe within 1 min the tyrosine phosphorylation of a new substrate protein, p105, reaching maximal levels at 3 min. Tyrosine phosphorylation of p105 remains elevated for up to 4 h. Subsequent to p105, NGF induces the tyrosine phosphorylation of p42, a protein belonging to the family of mitogen-activated protein (MAP) kinases. This stimulation is transient, reaching maximal levels at 10 min and returning to very low levels already after 2 h. In DRG sensory neurons, tyrosine phosphorylation of p105 is weak and very short lived, disappearing already after treatment with NGF for 10 min. In contrast, activation of MAP kinase p42 in DRG sensory neurons is more stable than in sympathetic neurons. All NGF-stimulated tyrosine phosphorylation events were inhibited by preincubation of neurons with the tropomyosin-related kinase (trk) inhibitor K252a. We suggest the working hypothesis that persistent tyrosine phosphorylation of p105 may play a role in the p21ras-independent NGF survival pathway of chick sympathetic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号