首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. This study demonstrated that post-insult treatment with a histone deacetylase inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2'-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid–neural cell adhesion molecule, nestin, glial fibrillary acidic protein, phospho-cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and polysialic acid–neural cell adhesion molecule was observed in multiple regions after ischemia, and SB treatment up-regulated protein levels of BDNF, phospho-CREB, and glial fibrillary acidic protein. Intraventricular injection of K252a, a tyrosine kinase B receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG, and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that histone deacetylase inhibitor-induced cell proliferation, migration and differentiation require BDNF–tyrosine kinase B signaling and may contribute to long-term beneficial effects of SB after ischemic injury.  相似文献   

2.
Banasr M  Duman RS 《Neuron》2008,59(3):349-351
Despite growing evidence that increased brain-derived neurotrophic factor (BDNF) and hippocampal adult neurogenesis are necessary for the behavioral actions of antidepressants in rodents, the cellular mechanisms involved in these effects are still unknown. Li et al. in this issue of Neuron demonstrate that the presence of TrkB, the high-affinity receptor for BDNF, in hippocampal neural progenitor cells is required for the neurogenic and behavioral actions of antidepressant treatments.  相似文献   

3.
The loss of nigral dopaminergic (DA) neurons is the disease-defining pathological change responsible for progressive motor dysfunction in Parkinson’s disease. In this study, we sought to establish a culture method for adult rat tyrosine hydroxylase (TH)-immunoreactive DA neurons. In this context, we investigated the role of fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), transforming growth factor-β3 (TGF-β3), glial-derived neurotrophic factor (GDNF) and dibutyryl-cyclic AMP (dbcAMP) in these cultures. Culturing in the presence of FGF2, BDNF and GDNF enhanced the survival of DA neurons by 15-fold and promoted neurite growth. In contrast, dbcAMP promoted neurite growth in all neurons but did not enhance DA cell survival. This study demonstrates that long-term cultures of DA neurons can be established from the mature rat brain and that survival and regeneration of DA neurons can be manipulated by epigenetic factors such as growth factors and intracellular cAMP pathways.  相似文献   

4.
神经营养因子与神经干细胞   总被引:17,自引:0,他引:17  
Sun Y  Shi J  Lu PH 《生理科学进展》2002,33(4):313-316
生长因子在神经干细胞的增殖,分化和存活过程中有重要作用。神经营养因子是其中的一类,它包括神经生长因子(NGF)家族,胶质源性神经营养因子(GDNF)家族和其它神经营养因子。NGF家族包括NGF,BDNF,NT-3,NT-4/5和NT-6。这一家族可促进epidermic growth facter(EGF)反应 海马及前脑室管膜下区神经干细胞的存活和分化。GDNF家族包括GDNF,NTN,PSP和ART。GDNF家族促神经发育的作用主要在外周,它促进肠神经嵴前体细胞的存活和增殖,且对外周感觉神经的发育至关重要。其它生长因子如bFGF和EGF,它们能促进神经干细胞增殖和存活;CNTF和LIF等在神经干细胞的分化中也有重要作用。  相似文献   

5.
Generation of new neurons persists in the normal adult mammalian brain, with neural stem/progenitor cells residing in at least two brain regions: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG). Adult neurogenesis is well documented in the rodent, and has also been demonstrated in vivo in nonhuman primates and humans. Brain injuries such as ischemia affect neurogenesis in adult rodents as both global and focal ischemic insults enhance the proliferation of progenitor cells residing in SGZ or SVZ. We addressed the issue whether an injury triggered activation of endogenous neuronal precursors also takes place in the adult primate brain. We found that the ischemic insult increased the number of progenitor cells in monkey SGZ and SVZ, and caused gliogenesis in the ischemia-prone hippocampal CA1 sector. To better understand the mechanisms regulating precursor cell division and differentiation in the primate, we analyzed the expression at protein level of a panel of potential regulatory molecules, including neurotrophic factors and their receptors. We found that a fraction of mitotic progenitors were positive for the neurotrophin receptor TrkB, while immature neurons expressed the neurotrophin receptor TrkA. Astroglia, ependymal cells and blood vessels in SVZ were positive for distinctive sets of ligands/receptors, which we characterized. Thus, a network of neurotrophic signals operating in an autocrine or paracrine manner may regulate neurogenesis in adult primate SVZ. We also analyzed microglial and astroglial proliferation in postischemic hippocampal CA1 sector. We found that proliferating postischemic microglia in adult monkey CA1 sector express the neurotrophin receptor TrkA, while activated astrocytes were labeled for nerve growth factor (NGF), ligand for TrkA, and the tyrosine kinase TrkB, a receptor for brain derived neurotrophic factor (BDNF). These results implicate NGF and BDNF as regulators of postischemic glial proliferation in adult primate hippocampus.  相似文献   

6.
Objectives: Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor‐2 (FGF‐2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF‐2 to fractone‐HS is implicated in the mechanism leading to cell proliferation in the SVZa. Materials and methods: Heparitinase‐1 was intracerebroventricularly injected with FGF‐2 to N‐desulfate HS proteoglycans and determine whether the loss of HS and of FGF‐2 binding to fractones modifies FGF‐2 effect on cell proliferation. We also examined in vivo the binding of Alexa‐Fluor‐FGF‐2 in relationship with the location of HS immunoreactivity in the SVZa. Results: Heparatinase‐1 drastically reduced the stimulatory effect of FGF‐2 on cell proliferation in the SVZa. Alexa‐Fluor‐FGF‐2 binding was strictly co‐localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. Conclusions: Our results demonstrate that FGF‐2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF‐2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.  相似文献   

7.
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.  相似文献   

8.
9.
Neurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence. The present study used immunohistochemistry to localize factors in situ and to test hypotheses about their roles in an in vitro model. Specific antibody staining revealed that TrkC, the NT3 receptor, is present in neural precursors prior to embryonic day E11 until after birth. NT3 appeared in precursor cells during migration (E13-E15) and disappeared at birth. TrkC and NT3 occurred in the same structures, including growing axons, terminals, and their synaptic targets. Thus, NT3 tracks the migration routes and the morphogenetic sequences within a window defined by TrkC. In vitro, the cochlear nucleus anlage was explanted from E11 embryos. Cultures were divided into groups fed with defined medium, with or without FGF2, BDNF, and NT3 supplements, alone or in combinations, for 7 days. When neuroblasts migrated and differentiated, immunostaining was used for locating NT3 and TrkC in the morphogenetic sequence, bromodeoxyuridine for proliferation, and synaptic vesicle protein for synaptogenesis. By time-lapse imaging and quantitative measures, the results support the hypothesis that FGF2 promotes proliferation and migration. NT3 interacts with FGF2 and BDNF to promote neurite outgrowth, fasciculation, and synapse formation. Factors and receptors localize to the structural sites undergoing critical changes.  相似文献   

10.
11.
Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various pathological conditions. We employed the well established murine cuprizone model of toxic demyelination to analyze the expression of 13 growth factors in the CNS during de- and remyelination. The temporal mRNA expression profile during demyelination and the subsequent remyelination were analyzed separately in the corpus callosum and cerebral cortex using laser microdissection and real-time PCR techniques. During demyelination a similar pattern of growth factor mRNA expression was observed in both areas with a strong up-regulation of NRG1 and GDNF and a slight increase of CNTF in the first week of cuprizone treatment. HGF, FGF-2, LIF, IGF-I, and TGF-ß1 were up-regulated mainly during peak demyelination. In contrast, during remyelination there were regional differences in growth factor mRNA expression levels. GDNF, CNTF, HGF, FGF-2, and BDNF were elevated in the corpus callosum but not in the cortex, suggesting tissue differences in the molecular regulation of remyelination in the white and grey matter. To clarify the cellular source we isolated microglia from the cuprizone lesions. GDNF, IGF-1, and FGF mRNA were detected in the microglial fraction with a temporal pattern corresponding to that from whole tissue PCR. In addition, immunohistochemical analysis revealed IGF-1 protein expression also in the reactive astrocytes. CNTF was located in astrocytes. This study identified seven different temporal expression patterns for growth factors in white and grey matter and demonstrated the importance of early tissue priming and exact orchestration of different steps during callosal and cortical de- and remyelination.  相似文献   

12.

Background

Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis.

Methodology/Principal Findings

2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively.

Conclusions/Significance

The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits.  相似文献   

13.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   

14.
15.
In adult mammalian brains, neurogenesis persists in the subventricular zone of the lateral ventricles (SVZ) and the dentate gyrus (DG) of the hippocampus. Although evidence suggest that adult neurogenesis in these two regions is subjected to differential regulation, the underlying mechanism is unclear. Here, we show that the RNA-binding protein FXR2 specifically regulates DG neurogenesis by reducing the stability of Noggin mRNA. FXR2 deficiency leads to increased Noggin expression and subsequently reduced BMP signaling, which results in increased proliferation and altered fate specification of neural stem/progenitor cells in DG. In contrast, Noggin is not regulated by FXR2 in the SVZ, because Noggin expression is restricted to the ependymal cells of the lateral ventricles, where FXR2 is not expressed. Differential regulation of SVZ and DG stem cells by FXR2 may be a key component of the mechanism that governs the different neurogenic processes in these two adult germinal zones.  相似文献   

16.
Here we report a previously unknown self repair mechanism during extremely early stages of rat Parkinsonism. Two important cell survival signaling cascades, Phosphatidylinositol-3 kinases (PI3K)/Akt pathway and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, could be responsible for this potential endogenous rescue system. In the 6-hydroxydopamine-lesioned rat, the phosphorylated p44/42 MAPK and its downstream target, the phosphorylated Bad at Ser 112, were up-regulated at post-lesion day 3 and lasted for a couple of weeks. Although the change in the phosphorylated Akt kinase was negligible throughout the studied period, its downstream target, the phosphorylated Bad at 136, was increased from post-lesion day 3 to post-lesion day 14. In the mean time, nestin-positive reactive astrocytes with low levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) appeared at post-lesion day 3 in 6-hydroxydopamine-lesioned rat. BDNF was expressed in both striatum and substantia nigra whereas GDNF was displayed in striatum only. At post-lesion day 14, nestin, BDNF and GDNF expressions were diminished. These neurotrophic factors were believed to initiate the above anti-apoptotic signal transduction cascades as we could see that their expression patterns were similar. The data strongly suggest that there is an endogenous repair effort by evoking the cell survival signaling and possibly via the releases of BDNF and GDNF from nestin-immunoreactive reactive astrocytes. ERK/MAPK pathway was proposed to be the key endogenous neuroprotective mechanisms, particularly in early stages of rat Parkinsonism. However, the self repair effort is only functional within an extremely short time window immediately after onset.  相似文献   

17.
Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affecting stem cell fate choices. Here, we review the components of adult neural stem cell niches and how they act to regulate neurogenesis in these regions.  相似文献   

18.
19.
In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation.In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.  相似文献   

20.
Production of new neurons continues throughout life in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus and is influenced by both endocrine and social factors. In sheep parturition is associated with the establishment of a selective bond with the young based on an olfactory learning. The possibility exists that endocrine changes at parturition together with interactions with the young modulate cell proliferation in the neurogenic zones. In the present study, we first investigated the existence of cell proliferation in sheep. Newly born cells labeled by the cell proliferation marker 5-bromo-2′-deoxyuridine (BrdU) were found in the SVZ, the main olfactory bulb (MOB) and the DG and completely co-localized with Ki-67, another mitotic marker. Forty to 50% of the BrdU-labeled cells contained GFAP suggestive of the presence of neural stem cells. Secondly, parturition with or without interactions with the lamb for 2 days, down-regulated the number of BrdU-labeled cells in the 3 proliferation sites in comparison to no pregnancy. An additional control provided evidence that this effect is specific to early postpartum period: estrus with interactions with males did not affect cell proliferation. Our results provide the first characterization of neural cell proliferation in the SVZ, the DG and unexpectedly in the MOB of adult sheep. We hypothesize that the down-regulation of cell proliferation observed in the early postpartum period could facilitate the olfactory perceptual and memory demands associated with maternal behavior by favouring the survival and integration of neurons born earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号