首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim of the Study

Hepatocellular carcinoma is one of the most malignant human cancers with high metastatic potential. The aim of this study is to investigate the anti-metastatic effect of genipin and its underlying mechanism.

Experimental Approach

The anti-metastatic potential of genipin was evaluated by both cell and animal model. Wound healing and invasion chamber assays were introduced to examine the anti-migration and anti-invasion action of genipin in human hepatocellular carcinoma cell HepG2 and MHCC97L; orthotopical implantation model was used for in vivo evaluation. Gelatin Zymography, Immunoblotting, quantitative real-time polymerase chain reaction and ELISA assays were used to study the mechanisms underlying genipin’s anti-metastatic effect.

Key Results

Genipin suppresses the motility and invasiveness of HepG2 and MHCC97L at non-toxic doses, which may be correlated to the inhibition of genipin on MMP-2 activities in the cells. No significant reduced expression of MMP-2 was observed either at mRNA or at protein level. Furthermore, genipin could specifically up-regulate the expression of TIMP-1, the endogenous inhibitor of MMP-2 activities. Silencing of TIMP-1 by RNA interference abolishes genipin’s anti-metastaic effect. Activation of p38 MAPK signaling was observed in genipin-treated cells, which is responsible for the TIMP-1 overexpression and MMP-2 inhibition. Presence of SB202190, the p38 MAPK inhibitor, attenuates the anti-metastatic potential of genipin in hepatocellular carcinoma. Orthotopical implantation model showed that genipin could suppress the intrahepatic metastatic as well as tumor expansion in liver without exhibiting potent toxicity.

Conclusion

Our findings demonstrated the potential of genipin in suppressing hepatocellular carcinoma metastasis, and p38/TIMP-1/MMP-2 pathway may be involved as the key mechanism of its anti-metastasis effect.  相似文献   

2.

Background

Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3′-diindolylmethane (DIM), to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor.

Methodology/Principal Findings

Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA) studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E2 enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9.

Conclusion/Significance

Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease.  相似文献   

3.

Background

Some low molecular weight heparins (LMWHs) prolong survival of cancer patients and inhibit experimental metastasis. The underlying mechanisms are still not clear but it has been suggested that LMWHs (at least in part) limit metastasis by preventing cancer cell-induced destruction of the endothelial glycocalyx.

Methodology/Principal Findings

To prove or refute this hypothesis, we determined the net effects of the endothelial glycocalyx in cancer cell extravasation and we assessed the anti-metastatic effect of a clinically used LMWH in the presence and absence of an intact endothelial glycocalyx. We show that both exogenous enzymatic degradation as well as endogenous genetic modification of the endothelial glycocalyx decreased pulmonary tumor formation in a murine experimental metastasis model. Moreover, LMWH administration significantly reduced the number of pulmonary tumor foci and thus experimental metastasis both in the presence or absence of an intact endothelial glycocalyx.

Conclusions

In summary, this paper shows that the net effect of the endothelial glycocalyx enhances experimental metastasis and that a LMWH does not limit experimental metastasis by a process involving the endothelial glycocalyx.  相似文献   

4.

Background

Recently there has been an increased interest in the pharmacologically active natural products associated with remedies of various kinds of diseases, including cancer. Fucoidan is a polysaccharide derived from brown seaweeds and has long been used as an ingredient in some dietary supplement products. Although fucoidan has been known to have anti-cancer activity, the anti-metastatic effects and its detailed mechanism of actions have been poorly understood. Therefore, the aims of this study were to demonstrate the anti-metastatic functions of fucoidan and its mechanism of action using A549, a highly metastatic human lung cancer cell line.

Methods and Principal Findings

Fucoidan inhibits the growth of A549 cells at the concentration of 400 µg/ml. Fucoidan treatment of non-toxic dose (0–200 µg/ml) exhibits a concentration-dependent inhibitory effect on the invasion and migration of the cancer cell via decreasing its MMP-2 activity. To know the mechanism of these inhibitory effects, Western blotting was performed. Fucoidan treatment down-regulates extracellular signal-related kinase 1 and 2 (ERK1/2) and phosphoinositide 3-kinase (PI3K)–Akt–mammalian target of rapamycin (PI3K-Akt-mTOR) pathways. Furthermore, fucoidan decreases the cytosolic and nuclear levels of Nuclear Factor-kappa B (p65).

Conclusions/Significance

The present study suggests that fucoidan exhibits anti-metastatic effect on A549 lung cancer cells via the down-regulation of ERK1/2 and Akt-mTOR as well as NF-kB signaling pathways. Hence, fucoidan can be considered as a potential therapeutic reagent against the metastasis of invasive human lung cancer cells.  相似文献   

5.
Chen PS  Shih YW  Huang HC  Cheng HW 《PloS one》2011,6(5):e20164

Background

Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum), was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells.

Methods and Principal Findings

Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN) were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF) in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt, extracellular signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that diosgenin inhibited NF-κB activity.

Conclusion/Significance

The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.  相似文献   

6.
7.

Background

Matrix metalloproteinases (MMPs) and C-reactive protein (CRP) are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. The aim of the present work was to determine plasma concentrations of MMPs and CRP in COPD associated to biomass combustion exposure (BE) and tobacco smoking (TS).

Methods

Pulmonary function tests, plasma levels of MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP were measured in COPD associated to BE (n = 40) and TS (n =40) patients, and healthy non-smoking (NS) healthy women (controls, n = 40).

Results

Plasma levels of MMP-1, MMP-7, MMP-9, and MMP-9/TIMP-1 and CRP were higher in BE and TS than in the NS healthy women (p <0.01). An inverse correlation between MMP-1, MMP-7, MMP-9, MMP-9/TIMP-1 and CRP plasma concentrations and FEV1 was observed.

Conclusions

Increase of MMPs and CRP plasma concentrations in BE suggests a systemic inflammatory phenomenon similar to that observed in COPD associated to tobacco smoking, which may also play a role in COPD pathogenesis.  相似文献   

8.

Background

A major player in the process of metastasis is the actin cytoskeleton as it forms key structures in both invasion mechanisms, mesenchymal and amoeboid migration. We tested the actin binding compound Chondramide as potential anti-metastatic agent.

Methods

In vivo, the effect of Chondramide on metastasis was tested employing a 4T1-Luc BALB/c mouse model. In vitro, Chondramide was tested using the highly invasive cancer cell line MDA-MB-231 in Boyden-chamber assays, fluorescent stainings, Western blot and Pull down assays. Finally, the contractility of MDA-MB-231 cells was monitored in 3D environment and analyzed via PIV analysis.

Results

In vivo, Chondramide treatment inhibits metastasis to the lung and the migration and invasion of MDA-MB-231 cells is reduced by Chondramide in vitro. On the signaling level, RhoA activity is decreased by Chondramide accompanied by reduced MLC-2 and the stretch induced guanine nucleotide exchange factor Vav2 activation. At same conditions, EGF-receptor autophosphorylation, Akt and Erk as well as Rac1 are not affected. Finally, Chondramide treatment disrupted the actin cytoskeleton and decreased the ability of cells for contraction.

Conclusions

Chondramide inhibits cellular contractility and thus represents a potential inhibitor of tumor cell invasion.  相似文献   

9.
10.

Background

Matrix metalloproteinase-2 (MMP-2) plays an important role in cancer progression and metastasis. MMP-2 is secreted as a pro-enzyme, which is activated by the membrane-bound proteins, and the polarized distribution of secretory and the membrane-associated MMP-2 has been investigated. However, the real-time visualizations of both MMP-2 secretion from the front edge of a migration cell and its distribution on the cell surface have not been reported.

Methodology/Principal Findings

The method of video-rate bioluminescence imaging was applied to visualize exocytosis of MMP-2 from a living cell using Gaussia luciferase (GLase) as a reporter. The luminescence signals of GLase were detected by a high speed electron-multiplying charge-coupled device camera (EM-CCD camera) with a time resolution within 500 ms per image. The fusion protein of MMP-2 to GLase was expressed in a HeLa cell and exocytosis of MMP-2 was detected in a few seconds along the leading edge of a migrating HeLa cell. The membrane-associated MMP-2 was observed at the specific sites on the bottom side of the cells, suggesting that the sites of MMP-2 secretion are different from that of MMP-2 binding.

Conclusions

We were the first to successfully demonstrate secretory dynamics of MMP-2 and the specific sites for polarized distribution of MMP-2 on the cell surface. The video-rate bioluminescence imaging using GLase is a useful method to investigate distribution and dynamics of secreted proteins on the whole surface of polarized cells in real time.  相似文献   

11.
12.

Object

To test the hypothesis that angiotensin II (Ang II) could enhance noradrenaline (NA) release from sympathetic nerve endings of the aorta thus contributing to the up-regulation of matrix metalloproteinase 2 (MMP-2) during the formation of aortic dissection (AD).

Methods

Ang II, NA, MMP-2, MMP-9 of the aorta sample obtained during operation from aortic dissection patients were detected by High Performance Liquid Chromatography and ELISA and compared with controls. Isotope labelling method was used to test the impact of exogenous Ang II and noradrenaline on the NA release and MMP-2, MMP-9 expression on Sprague Dawley (SD) rat aorta rings in vitro. Two kidneys, one clip, models were replicated for further check of that impact in SD rats in vivo.

Results

The concentration of Ang II, MMP-2, 9 was increased and NA concentration was decreased in aorta samples from AD patients. Exogenous Ang II enhanced while exogenous NA restrained NA release from aortic sympathetic endings. The Ang II stimulated NA release and the following MMP-2 up-regulation could be weakened by Losartan and chemical sympathectomy. Beta blocker did not influence NA release but down-regulated MMP-2. Long term in vivo experiments confirmed that Ang II could enhance NA release and up-regulate MMP-2.

Conclusions

AD is initiated by MMP-2 overexpression as a result of increased NA release from sympathetic nervous endings in response to Ang II. This indicates an interaction of RAS and SAS during the formation of AD.  相似文献   

13.
Liu X  Li Y  Zhang Y  Lu Y  Guo W  Liu P  Zhou J  Xiang Z  He C 《PloS one》2011,6(6):e21058

Background

Oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes (OLs), which are responsible for myelination. Myelin is essential for saltatory nerve conduction in the vertebrate nervous system. However, the molecular mechanisms of maturation and myelination by oligodendrocytes remain elusive.

Methods and Findings

In the present study, we showed that maturation of oligodendrocytes was attenuated by sodium orthovanadate (a comprehensive inhibitor of tyrosine phosphatases) and PTPi IV (a specific inhibitor of SHP-2). It is also found that SHP-2 was persistently expressed during maturation process of OPCs. Down-regulation of endogenous SHP-2 led to impairment of oligodendrocytes maturation and this effect was triiodo-L-thyronine (T3) dependent. Furthermore, over-expression of SHP-2 was shown to promote maturation of oligodendrocytes. Finally, it has been identified that SHP-2 was involved in activation of Akt and extracellular-regulated kinases 1 and 2 (ERK1/2) induced by T3 in oligodendrocytes.

Conclusions

SHP-2 promotes oligodendrocytes maturation via Akt and ERK1/2 signaling in vitro.  相似文献   

14.

Rationale

After 9/11/2001, most FDNY workers had persistent lung function decline but some exposed workers recovered. We hypothesized that the protease/anti-protease balance in serum soon after exposure predicts subsequent recovery.

Methods

We performed a nested case–control study measuring biomarkers in serum drawn before 3/2002 and subsequent forced expiratory volume at one second (FEV1) on repeat spirometry before 3/2008. Serum was assayed for matrix metalloproteinases (MMP-1,2,3,7,8,9,12 and 13) and tissue inhibitors of metalloproteinases (TIMP-1,2,3,4). The representative sub-cohort defined analyte distribution and a concentration above 75th percentile defined elevated biomarker expression. An FEV1 one standard deviation above the mean defined resistance to airway injury. Logistic regression was adjusted for pre-9/11 FEV1, BMI, age and exposure intensity modeled the association between elevated biomarker expression and above average FEV1.

Results

FEV1 in cases and controls declined 10% of after 9/11/2001. Cases subsequently returned to 99% of their pre-exposure FEV1 while decline persisted in controls. Elevated TIMP-1 and MMP-2 increased the odds of resistance by 5.4 and 4.2 fold while elevated MMP-1 decreased it by 0.27 fold.

Conclusions

Resistant cases displayed healing, returning to 99% of pre-exposure values. High TIMP-1 and MMP-2 predict healing. MMP/TIMP balance reflects independent pathways to airway injury and repair after WTC exposure.  相似文献   

15.

Background

We previously demonstrated that the matrix metalloproteinase-2 (MMP-2) contained an antigenic peptide recognized by a CD8 T cell clone in the HLA-A*0201 context. The presentation of this peptide on class I molecules by human melanoma cells required a cross-presentation mechanism. Surprisingly, the classical endogenous processing pathway did not process this MMP-2 epitope.

Methodology/Principal Findings

By PCR directed mutagenesis we showed that disruption of a single disulfide bond induced MMP-2 epitope presentation. By Pulse-Chase experiment, we demonstrated that disulfide bonds stabilized MMP-2 and impeded its degradation. Finally, using drugs, we documented that mutated MMP-2 epitope presentation used the proteasome and retrotranslocation complex.

Conclusions/Significance

These data appear crucial to us since they established the existence of a new inhibitory mechanism for the generation of a T cell epitope. In spite of MMP-2 classified as a self-antigen, the fact that cross-presentation is the only way to present this MMP-2 epitope underlines the importance to target this type of antigen in immunotherapy protocols.  相似文献   

16.
Zhao Y  Kong X  Li X  Yan S  Yuan C  Hu W  Yang Q 《PloS one》2011,6(12):e29363

Background

Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive.

Principal Findings

We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS) upregulates the expression of Metadherin (MTDH), a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB) activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production.

Conclusions

These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer.  相似文献   

17.

Background

Prior studies have demonstrated that the distal 1.5 kb of the MMP-1 promoter is fundamental in directing the induction of the MMP-1 gene by cigarette smoke.

Methods

To characterize the genetic variants in the MMP-1 cigarette smoke-responsive element, deep re-sequencing of this element was performed on DNA samples from participants in the Lung Health Study. Furthermore, evidence of Sp1 binding to the MMP-1 promoter was assessed using chromatin immunoprecipitation assays and the influence of cigarette smoke exposure on this interaction was evaluated in cultured human small airway epithelial cells.

Results

Ten polymorphisms (four novel) were detected in the cigarette smoke-responsive element. Chromatin immunoprecipitation assays to assess the protein-DNA interactions at Sp1 sites in the MMP-1 promoter showed increased binding to the Sp1 sites in the cigarette smoke-responsive element in small airway epithelial cells treated with cigarette smoke extract. In contrast, a Sp1 site outside of the element exhibited the opposite effect. None of the polymorphisms were more prevalent in the fast decliners versus the slow decliners (fast decliners = mean −4.14% decline in FEV1% predicted per year vs. decline in FEV1% predicted per year).

Conclusions

Sequencing analyses identified four novel polymorphisms within the cigarette smoke-responsive element of the MMP-1 promoter. This study identifies functional activity within the cigarette smoke-responsive element that is influenced by cigarette smoke and examines this region of the promoter within a small patient population.  相似文献   

18.
Zhang R  Pan X  Huang Z  Weber GF  Zhang G 《PloS one》2011,6(8):e23831

Background and Aims

Osteopontin, SDF-1α, and MMP-2 are important secreted molecules involved in the pathophysiology of human hepatocellular carcinoma (HCC). This study investigates the effect of the SDF-1α/CXCR4 axis on expression and activity of MMP-2 induced by osteopontin.

Methods

The expression of CXCR4, SDF-1α, MMP-2 and their associated cellular signaling cascades, involving Akt and MAP Kinases, were determined by Western blotting. The activities of MMP-2 and MMP-9 were assayed by gel zymography. The role of the osteopontin receptors integrin αvβ3 and CD44v6 was evaluated using neutralizing antibodies. We also established CXCR4-deficient SMMC7721 cell lines by transfection with miRNA-CXCR4 plasmids and determined cell invasion activity in a transwell assay.

Results

In comparison with untreated cells, recombinant human osteopontin (rhOPN) up-regulated CXCR4, SDF-1α, and MMP-2 expression about 5-, 4-, and 6-fold on the protein levels through binding to integrin αvβ3 and CD44v6 in hepatocellular carcinoma cells (SMMC7721 and HepG2). Inhibition of the SDF-1α/CXCR4 axis down-regulated the rhOPN-induced MMP-2 expression and activity. rhOPN also activated Akt, p38 and JNK. Down-regulation of CXCR4 decreased the rhOPN-induced invasion in SMMC7721 cells.

Conclusion

These results indicate that rhOPN up-regulates MMP-2 through the SDF-1α/CXCR4 axis, mediated by binding to integrin αvβ3 and CD44v6 and activating the PI-3K/Akt and JNK pathways in HepG2 and SMMC7721 cells. Therefore, the osteopontin-SDF-1α/CXCR4-MMP-2 system may be a new therapeutic target for treating HCC progression.  相似文献   

19.

Background

The prognosis for patients with hepatocellular carcinoma (HCC) is poor, and the mechanisms underlying the development of HCC remain unclear. Notch1 and Notch3 may be involved in malignant transformation, although their roles remain unknown.

Materials and Methods

HCC tissues were stained with anti-Notch1 or -Notch3 antibody. The migration and invasion capacities of the cells were measured with transwell cell culture chambers. RT-PCR was used to measure the expression of Notch1 and Notch3 mRNA. Additionally, western blot analysis was used to assess the protein expression of Notch1, Notch3, CD44v6, E-cadherin, matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator (uPA). RNA interference was used to down-regulate the expression of Notch1 and Notch3. Cell viability was assessed using MTT.

Results

Based on immunohistochemistry, high Notch1 expression was correlated with tumor size, tumor grade, metastasis, venous invasion and AJCC TNM stage. High Notch3 expression was only strongly correlated with metastasis, venous invasion and satellite lesions. Kaplan-Meier curves demonstrated that patients with high Notch1 or Notch3 expression were at a significantly increased risk for shortened survival time. In vitro, the down-regulation of Notch1 decreased the migration and invasion capacities of HCC cells by regulating CD44v6, E-cadherin, MMP-2, MMP-9, and uPA via the COX-2 and ERK1/2 pathways. Down-regulation of Notch3 only decreased the invasion capacity of HCC cells by regulating MMP-2 and MMP-9 via the ERK1/2 pathway.

Conclusions

Based on the migration and invasion of HCC, we hypothesize that targeting Notch1 may be more useful than Notch3 for designing novel preventive and therapeutic strategies for HCC in the near future.  相似文献   

20.

Background

The coincidence of vascular smooth muscle cells (VSMC) infiltration and collagen deposition within a diffusely thickened intima is a salient feature of central arterial wall inflammation that accompanies advancing age. However, the molecular mechanisms involved remain undefined.

Methodology/Principal Findings

Immunostaining and immunoblotting of rat aortae demonstrate that a triad of proinflammatory molecules, MCP-1, TGF-β1, and MMP-2 increases within the aortic wall with aging. Exposure of VSMC isolated from 8-mo-old rats (young) to MCP-1 effects, via CCR-2 signaling, both an increase in TGF-β1 activity, up to levels of untreated VSMC from 30-mo-old (old) rats, and a concurrent increase in MMP-2 activation. Furthermore, exposure of young VSMC to TGF-β1 increases levels of MCP-1, and MMP-2 activation, to levels of untreated VSMC from old rats. This autocatalytic signaling loop that enhances collagen production and invasiveness of VSMC is effectively suppressed by si-MCP-1, a CCR2 antagonist, or MMP-2 inhibition.

Conclusions/Significance

Threshold levels of MCP-1, MMP-2, or TGF-β1 activity trigger a feed-forward signaling mechanism that is implicated in the initiation and progression of adverse age-associated arterial wall remodeling. Intervention that suppressed this signaling loop may potentially retard age-associated adverse arterial remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号