首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current climate change exacerbates the environmental restrictions on temperate species inhabiting low latitude edges of their geographical ranges. We examined how temperature variations due to current and future climate change are likely to affect populations’ persistence of stream‐dwelling brown trout Salmo trutta at the vulnerable southern periphery of its range. Analysis of 33 years of air temperature data (1975–2007) by time‐series models indicated a significant upward trend and a pronounced shift in air temperature around 1986‐1987. This warming is associated with an ongoing population decline of brown trout, most likely caused by a loss of suitable thermal habitat in lower latitudes since the 1980s. Population decrease may not be attributed to physical habitat modification or angler pressure, as carrying capacity remained stable and populations were not overexploited. We developed regional temperature models, which predicted that unsuitable thermal habitat for brown trout increased by 93% when comparing climate conditions between 1975–1986 and 1993–2004. Predictions from climate envelope models showed that current climate change may be rendering unsuitable 12% of suitable thermal habitat each decade, resulting in an overall population decrease in the lower reaches of around 6% per year. Furthermore, brown trout catches markedly decreased 20% per year. Projections of thermal habitat loss under the ecologically friendly B2 SRES scenario showed that brown trout may lose half of their current suitable habitat within the study area by 2040 and become almost extinct by 2100. In parallel to the upstream movement of brown trout thermal habitat, warm water species are increasing their relative abundance in salmonid waters. Empirical evidence was provided of how current climate change threatens some of the most healthy native brown trout populations in Southern Europe and how forthcoming climate change is expected to further decrease the conservation status of the species.  相似文献   

2.
Johnson CN  Vernes K  Payne A 《Oecologia》2005,143(1):70-76
We compared demography of populations along gradients of population density in two medium-sized herbivorous marsupials, the common brushtail possum Trichosurus vulpecula and the rufous bettong Aepyprymnus rufescens, to test for net dispersal from high density populations (acting as sources) to low density populations (sinks). In both species, population density was positively related to soil fertility, and variation in soil fertility produced large differences in population density of contiguous populations. We predicted that if source–sink dynamics were operating over this density gradient, we should find higher immigration rates in low-density populations, and positive relationships of measures of individual fitness—body condition, reproductive output, juvenile growth rates and survivorship—to population density. This was predicted because under source–sink dynamics, immigration from high-density sites would hold population density above carrying capacity in low-density sites. The study included 13 populations of these two species, representing a more than 50-fold range of density for each species, but we found that individual fitness, immigration rates and population turnover were similar in all populations. We conclude that net dispersal from high to low density populations had little influence on population dynamics in these species; rather, all populations appeared to be independently regulated at carrying capacity, with a balanced exchange of dispersers among populations. These two species have suffered recent reductions in range, and they are ecologically similar to other species that have declined to extinction in inland Australia. It has been argued that part of the cause of the vulnerability of species like these is that they exhibit source–sink dynamics, and disturbance to source habitats can therefore cause large-scale population collapses. The results of our study argue against this interpretation.  相似文献   

3.
In obligate seeding species, the germination niche is crucial for colonization and population survival. It is a high‐risk phase in a plant's life cycle, and is directly regulated by temperature. Seeds germinate over a range of temperatures within which there is an optimum temperature, with thresholds above and below which no germination occurs. We suggest that abrupt changes in temperature associated with a warming climate may cause a disconnect between temperatures seeds experience and temperatures over which germination is able to occur, rendering obligate seeding species vulnerable to decline and extinction. Using a bidirectional temperature gradient system, we examined the thermal constraints in the germination niche of some geographically restricted species from the low altitude mountains of the Stirling Range, southern Western Australia, including seedlots from lowland populations of four of these species. We demonstrated that high temperatures are not a limiting factor for germination in some restricted species, signifying a lack of relationship between geographic range size and breadth of the germination niche. In contrast, we identified other restricted species, in particular Sphenotoma drummondii, as being at risk of recruitment failure as a consequence of warming: seeds of this species showed a strong negative relationship between percentage germination and increasing temperature above a relatively low optimum constant temperature (13°C). We found some ecotypic differences in the temperature profiles between seeds collected from montane or lowland populations of Andersonia echinocephala, and while specific populations may become more restricted, they are perhaps at less risk of extinction from climate warming. This seed‐based approach for identifying extinction risk will contribute tangibly to efforts to predict plant responses to environmental change and will assist in prioritizing species for management actions, directing limited resources towards further investigations and can supplement bioclimatic modelling.  相似文献   

4.
The rivers of southern England and northern France which drain into the English Channel contain several genetically unique groups of trout (Salmo trutta L.) that have suffered dramatic declines in numbers over the past 40 years. Knowledge of levels and patterns of genetic diversity is essential for effective management of these vulnerable populations. Using restriction site-associated DNA sequencing (RADseq) data, we describe the development and characterisation of a panel of 95 single nucleotide polymorphism (SNP) loci for trout from this region and investigate their applicability and variability in both target (i.e., southern English) and non-target trout populations from northern Britain and Ireland. In addition, we present three case studies which demonstrate the utility and resolution of these genetic markers at three levels of spatial separation:(a) between closely related populations in nearby rivers, (b) within a catchment and (c) when determining parentage and familial relationships between fish sampled from a single site, using both empirical and simulated data. The SNP loci will be useful for population genetic and assignment studies on brown trout within the UK and beyond.  相似文献   

5.
Fuelled by the generalized degradation of freshwater ecosystems, the development of tools to assess their ecological status has been the focus of intensive research in the last decades. Although fish are one of the key biological quality elements used to describe the ecological status of rivers, fish metrics that accurately respond to disturbances in Mediterranean trout type streams are still lacking. In these systems, multimetric indices are not optimal indicators because of their low species richness and abundances, thus alternative approaches are needed. Since carrying capacity defines the potential maximum abundance of fish that can be sustained by a river, its relationship with actual density (D/K ratio) could be an accurate indicator of population conservation status and consequently of the ecological status of the river. Based on this rationale, we modeled carrying capacity dynamics for 37 brown trout populations during a 12-year study period. We analyzed the response of the D/K ratio to a gradient of increasing environmental harshness and degradation in order to assess its suitability to accurately measure brown trout conservation status. Our results showed that the D/K ratio was highly sensitive to temporal and spatial variations in environmental conditions and the levels of human-induced environmental degradation. Variations in the environmental and human degradation factors included in the best explaining regression models developed for the whole population and by age classes accounted for between 58 and 81% of the variation in the D/K ratio. Likewise, the D/K ratio was sensitive to both general and life stage specific disturbance factors. Further analyses helped identify the factors limiting population abundance. Therefore, the D/K ratio could be an interesting indicator to consider when defining objective management plans and corrective actions in degraded rivers and streams subject to Mediterranean climatic conditions.  相似文献   

6.
Conserving species-at-risk requires quantifiable knowledge of the key drivers of population change. Non-linear demographic responses to habitat loss have been documented for many species and may serve to establish quantitative habitat thresholds for management purposes. In Canada, boreal populations of woodland caribou are considered threatened; Environment Canada’s empirical model of calf recruitment–range disturbance suggests that at least 65% undisturbed habitat is required to ensure viability. We tested the relationship upon which this conservation guideline is based by pairing demographic estimates with range conditions over a 10-year period for three boreal caribou populations. Our objectives were (1) to evaluate evidence of intra-population demographic responses to fluctuations in range quality over time; (2) to evaluate inter-population differences in demographic responses to cumulative range disturbances; and (3) to evaluate the sensitivity of disturbance tolerance thresholds to variation in local population demography. We found strong evidence in support of the disturbance–recruitment relationship for within-population responses over time (R2 = 0.77). Mixed effects logistic regression modeling revealed variations in local population responses to cumulative habitat depletion. Range-specific disturbance thresholds derived from Monte Carlo simulations were highly elastic in response to observed variation in local population demography, suggesting that 65% undisturbed habitat is insufficient when adult female survival and/or sex ratio is suboptimal. Study populations were determined to be not self-sustaining (Pr(λ ≥ 0.99) = 37–47%). Adult survival was comparable to estimates reported elsewhere despite Aboriginal harvesting for subsistence purposes. Results underscored potential trade-offs between forest harvesting and wildlife habitat conservation. Protection and restoration of sufficient quantities of undisturbed habitat, particularly via road reclamation, is essential for caribou population recovery.  相似文献   

7.
Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damselfishes and two species of cardinal fishes were held for 14 days at 29, 31, 33, and 34 °C, which incorporated their existing thermal range (29–31 °C) as well as projected increases in ocean surface temperatures of up to 3 °C by the end of this century. Resting and maximum oxygen consumption rates were measured for each species at each temperature and used to calculate the thermal reaction norm of aerobic scope. Our results indicate that one of the six species, Chromis atripectoralis, is already living above its thermal optimum of 29 °C. The other five species appeared to be living close to their thermal optima (ca. 31 °C). Aerobic scope was significantly reduced in all species, and approached zero for two species at 3 °C above current‐day temperatures. One species was unable to survive even short‐term exposure to 34 °C. Our results indicate that low‐latitude reef fish populations are living close to their thermal optima and may be more sensitive to ocean warming than higher‐latitude populations. Even relatively small temperature increases (2–3 °C) could result in population declines and potentially redistribution of equatorial species to higher latitudes if adaptation cannot keep pace.  相似文献   

8.
Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles (Caretta caretta) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability.  相似文献   

9.
Translocation programs are a common strategy to increase the number of viable populations of threatened freshwater fishes. Yet, only in a minority of cases the success or failure of translocations has been assessed through a quantitative analysis of demographic traits, compensatory responses, life-histories and population dynamics of the threatened species. A paradigmatic case a translocation program combining both management- and research-oriented activities is represented by the Marble Trout Conservation Program, which started in 1993 in the upper reaches of the Soca, Idirjca and Baca river basins (Slovenia) for the conservation of stream-dwelling marble trout Salmo marmoratus. In order to enhance the viability of the species, two new populations were created in 1996 by stocking 500 marble trout aged 1+ in previously fishless streams (Gorska and Zakojska) within the core habitat of the species. The new populations have been systematically monitored for 15 years by individually tagging and sampling marble trout. Our analyses show that deterministic extinction of marble trout populations are unlikely and that high-magnitude environmental stochasticity (i.e., severe floods) is the only main cause of local population extinction, despite the high resilience to flood-induced massive mortalities exhibited by marble trout through compensatory mechanisms (e.g., relaxation of density-dependent body growth and survival at low densities). Fishless headwaters, probably characterized by a history of recurrent severe floods, should not be considered as candidate sites for the creation of new populations. Fewer individuals than originally reintroduced (i.e., 500 fish aged 1+ in each stream) might be sufficient to establish viable populations, since compensatory mechanisms are likely to regulate population size around stream carrying capacity in a few years. Besides enhancing the species viability, translocation programs can provide an excellent framework for the estimation of ecological traits (e.g., life-histories, demography, population dynamics etc.), identify potential vulnerabilities and thus guide well-formed management actions for the threatened species.  相似文献   

10.
Salmonids inhabiting Mediterranean rivers are of particular concern for biodiversity conservation, as they are threatened by various stressors, including habitat alterations, overfishing, climate change, and introgressive hybridization with alien species. In the Tiber River basin (Central Italy), genetic introgression phenomena of the native Salmo cettii with the non‐native Salmo trutta hinder the separate analysis of the two species, which are both included in the S. trutta complex. Little is known about the factors currently limiting the trout populations in this area, particularly with respect to climate change. With the intention of filling this gap, the aims of the current study were to (a) quantify changes in the climate and (b) analyze the distribution, status, and ecology of trout populations, in the context of changing abiotic conditions over the last decades. Fish stock assessments were carried out by electrofishing during three census periods (1998–2004, 2005–2011, and 2012–2018) at 129 sites. The trend over time of meteorological parameters provided evidence for increased air temperature and decreased rainfall. Multivariate analysis of trout densities and environmental data highlighted the close direct correlation of trout abundance with water quality, altitude, and current speed. Climate‐induced effects observed over time in the sites where trout were sampled have not yet led to local extinctions or distribution shifts, indicating a marked resilience of trout, probably due to the buffering effect of intrinsic population dynamics. Decreasing body conditions over time and unbalanced age structures support the hypothesis that variations in hydraulic regime and water temperature could overcome these compensatory effects, which may lead to a severe decline in trout populations in the near future. In a climate change context, habitat availability plays a key role in the distribution of cold‐water species, which often do not have the possibility to move upstream to reach their thermal optimum because of water scarcity in the upper river stretches.  相似文献   

11.
Temperate species are projected to experience the greatest temperature increases across a range of modelled climate change scenarios, and climate warming has been linked to geographical range and population changes of individual species at such latitudes. However, beyond the multiple modelling approaches, we lack empirical evidence of contemporary climate change impacts on populations in broad taxonomic groups and at continental scales. Identifying reliable predictors of species resilience or susceptibility to climate warming is of critical importance in assessing potential risks to species, ecosystems and ecosystem services. Here we analysed long‐term trends of 110 common breeding birds across Europe (20 countries), to identify climate niche characteristics, adjusted to other environmental and life history traits, that predict large‐scale population changes accounting for phylogenetic relatedness among species. Beyond the now well‐documented decline of farmland specialists, we found that species with the lowest thermal maxima (as the mean spring and summer temperature of the hottest part of the breeding distribution in Europe) showed the sharpest declines between 1980 and 2005. Thermal maximum predicted the recent trends independently of other potential predictors. This study emphasizes the need to account for both land‐use and climate changes to assess the fate of species. Moreover, we highlight that thermal maximum appears as a reliable and simple predictor of the long‐term trends of such endothermic species facing climate change.  相似文献   

12.
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.  相似文献   

13.
Species may survive under contemporary climate change by either shifting their range or adapting locally to the warmer conditions. Theoretical and empirical studies recently underlined that dispersal, the central mechanism behind these responses, may depend on the match between an individuals’ phenotype and local environment. Such matching habitat choice is expected to induce an adaptive gene flow, but it now remains to be studied whether this local process could promote species’ responses to climate change. Here, we investigate this by developing an individual‐based model including either random dispersal or temperature‐dependent matching habitat choice. We monitored population composition and distribution through space and time under climate change. Relative to random dispersal, matching habitat choice induced an adaptive gene flow that lessened spatial range loss during climate warming by improving populations’ viability within the range (i.e. limiting range fragmentation) and by facilitating colonization of new habitats at the cold margin. The model even predicted range contraction under random dispersal but range expansion under optimal matching habitat choice. These benefits of matching habitat choice for population persistence mostly resulted from adaptive immigration decision and were greater for populations with larger dispersal distance and higher emigration probability. We also found that environmental stochasticity resulted in suboptimal matching habitat choice, decreasing the benefits of this dispersal mode under climate change. However population persistence was still better under suboptimal matching habitat choice than under random dispersal. Our results highlight the urgent need to implement more realistic mechanisms of dispersal such as matching habitat choice into models predicting the impacts of ongoing climate change on biodiversity.  相似文献   

14.
For species at risk, it is important that demographic models be consistent with our most recent knowledge because alternate model versions can have differing predictions for wildlife and natural resource management. To establish and maintain this consistency, we can compare predicted model values to current or past observations and demographic knowledge. When novel predictor information becomes available, testing for consistency between modeled and observed values ensures the best models are used for robust, evidence-based, wildlife management. We combine novel information on the extent of historical disturbance regimes (industrial and fire) to an existing demographic model and predict historical and projected demographics of woodland caribou (Rangifer tarandus caribou). Exploring 6 simulation experiments across 5 populations in Alberta, Canada, we identify the relative importance of industrial disturbance, fire, and population density to observed population size and growth rate. We confirm the onset of significant declines across all 5 populations began approximately 30 years ago, demonstrate these declines have been consistent, and conclude they are more likely due to industrial disturbance from the oil and gas sector within contemporary population ranges than historical fire regimes. These findings reinforce recent research on the cause of woodland caribou declines. Testing for consistency between observations and models prescribed for species recovery is paramount for assessing the cause of declines, projecting population trends, and refining recovery strategies for effective wildlife management. We provide a novel simulation method for conducting these tests. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

15.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.  相似文献   

16.
SUMMARY. 1. This short review summarizes a long-term investigation of brown trout in two populations that probably represent opposite extremes of life histories in this polymorphic species; Bhick Brows Beck serves as a nursery for the progeny of migratory trout (mixture of sea and estuarine trout) and Wilfin Beck is populated by resident trout. 2. Population density in Black Brows Beck was always much higher than that in Wilfin Beck, and was regulated by density-dependent survival in the early stages of the life cycle. There was no evidence for similar density-dependent regulation in Wilfin Beck; simple proportionate survival occurred with fairly constant loss-rates. Survival was reduced in both populations by summer droughts and also by spates in Wilfin Beck. 3. Black Brows trout were always larger than Wilfin Beck trout of similar age; fry size at the start of the growth period was chiefly responsible for these differences. Variations in water temperature were chiefly responsible for differences in growth rates between year-classes within each population. Food intake was not a limiting factor, except in the first winter of the life cycle and for adults over 3 years old in Wilfin Beck. Variation in individual size was inversely density-dependent in Black Brows Beck and decreased with age in Wilfin Beck, these changes being due to natural (stabilizing) selection. 4. There is strong evidence for genotypic differences between the populations. The implications of this are discussed, especially the need to conserve different populations that may contain unique genetic material, and the importance of restocking with fish reared from the indigenous population that should always contain the optimum genotypes for a particular habitat. Restocking with juveniles should be done with caution because it could lead to a decrease in both numbers and size variation when the population is regulated by density-dependent mechanisms. 5. One major objective of future work should be the development and improvement of mathematical models that can be used to predict the optimum density for trout in different populations, the maximum attainable growth rate in different habitats, and the effects on trout populations of environmental changes due to natural causes (e.g. droughts and spates) or human activities.  相似文献   

17.
Adaptive capacity can present challenges for modelling as it encompasses multiple ecological and evolutionary processes such as natural selection, genetic drift, gene flow and phenotypic plasticity. Spatially explicit, individual-based models provide an outlet for simulating these complex interacting eco-evolutionary processes. We expanded the existing Cost-Distance Meta-POPulation (CDMetaPOP) framework with inducible plasticity modelled as a habitat selection behaviour, using temperature or habitat quality variables, with a genetically based selection threshold conditioned on past individual experience. To demonstrate expected results in the new module, we simulated hypothetical populations and then evaluated model performance in populations of redband trout (Oncorhynchus mykiss gairdneri) across three watersheds where temperatures induce physiological stress in parts of the stream network. We ran simulations using projected warming stream temperature data under four scenarios for alleles that: (1) confer thermal tolerance, (2) bestow plastic habitat selection, (3) give both thermal tolerance and habitat selection preference and (4) do not provide either thermal tolerance or habitat selection. Inclusion of an adaptive allele decreased declines in population sizes, but this impact was greatly reduced in the relatively cool stream networks. As anticipated with the new module, high-temperature patches remained unoccupied by individuals with the allele operating plastically after exposure to warm temperatures. Using complete habitat avoidance above the stressful temperature threshold, habitat selection reduced the overall population size due to the opportunity cost of avoiding areas with increased, but not guaranteed, mortality. Inclusion of plasticity within CDMetaPOP will provide the potential for genetic or plastic traits and ‘rescue’ to affect eco-evolutionary dynamics for research questions and conservation applications.  相似文献   

18.
Understanding population change is essential for conservation of imperiled species, such as amphibians. Worldwide amphibian declines have provided an impetus for investigating their population dynamics, which can involve both extrinsic (density‐independent) and intrinsic (density‐dependent) drivers acting differentially across multiple life stages or age classes. In this study, we examined the population dynamics of the endangered Barton Springs Salamander (Eurycea sosorum) using data from a long‐term monitoring program. We were interested in understanding both the potential environmental drivers (density‐independent factors) and demographic factors (interactions among size classes, negative density dependence) to better inform conservation and management activities. We used data from three different monitoring regimes and multivariate autoregressive state‐space models to quantify environmental effects (seasonality, discharge, algae, and sediment cover), intraspecific interactions among three size classes, and intra‐class density dependence. Results from our primary data set revealed similar patterns among sites and size classes and were corroborated by our out‐of‐sample data. Cross‐correlation analysis showed juvenile abundance was most strongly correlated with a 9‐month lag in aquifer discharge, which we suspect is related to inputs of organic carbon into the aquifer. However, sedimentation limited juvenile abundance at the surface, emphasizing the importance of continued sediment management. Recruitment from juveniles to the sub‐adult size class was evident, but negative density‐dependent feedback ultimately regulated each size class. Negative density dependence may be an encouraging sign for the conservation of E. sosorum because populations that can reach carrying capacity are less likely to go extinct compared to unregulated populations far below their carrying capacity. However, periodic population declines coupled with apparent migration into the aquifer complicate assessments of species status. Although both density‐dependent and density‐independent drivers of population change are not always apparent in time series of animal populations, both have important implications for conservation and management of E. sosorum.  相似文献   

19.
The thermal range for viability is quite variable among Drosophila species and it has long been known that these variations are correlated with geographic distribution: temperate species are on average more cold tolerant but more heat sensitive than tropical species. At both ends of their viability range, sterile males have been observed in all species investigated so far. This symmetrical phenomenon restricts the temperature limits within which permanent cultures can be kept in the laboratory. Thermal heat sterility thresholds are very variable across species from 23 degrees C in heat sensitive species up to 31 degrees C in heat tolerant species. In Drosophila melanogaster, genetic variations are observed among geographic populations. Tropical populations are more tolerant to heat induced sterility and recover more rapidly than temperate ones. A genetic analysis revealed that about 50% of the difference observed between natural populations was due to the Y chromosome. Natural populations have not reached a selection limit, however: thermal tolerance was still increased by keeping strains at a high temperature, close to the sterility threshold. On the low temperature side, a symmetrical reverse phenomenon seems to exist: temperate populations are more tolerant to cold than tropical ones. Compared to Mammals, drosophilids exhibit two major differences: first, male sterility occurs not only at high temperature, but also at a low temperature; second, sterility thresholds are not evolutionarily constrained, but highly variable. Altogether, significant and sometimes major genetic variations have been observed between species, between geographic races of the same species, and even between strains kept in the laboratory under different thermal regimes. In each case, it is easily argued that the observed variations correspond to adaptations to climatic conditions, and that male sterility is a significant component of fitness and a target of natural selection.  相似文献   

20.
Between 1982 and 1987, the construction of a storm-surge barrier and two secondary dams in the eastern and northern parts of the Oosterschelde/Krammer-Volkerak area resulted in the loss of 33% of the 170 km2 of intertidal area in the estuary. Consequences for non-breeding waterbirds were evaluated on the basis of monthly high-tide counts during five seasons before and three seasons after the construction period.In the entire Oosterschelde/Krammer-Volkerak area, numbers of wintering waders decreased but those of ducks increased. Peak numbers and total number of bird-days changed little, but the seasonal pattern shifted from a midwinter maximum to a peak in autumn.In the Oosterschelde (excluding the Krammer-Volkerak), where 17% of the tidal flats disappeared, species feeding mainly on open water remained stable or increased. Species dependent on intertidal areas for foraging (mainly waders and dabbling ducks) generally decreased. Total density of intertidal foragers decreased slightly. In most intertidal species, the Oosterschelde wintering population showed a stronger decrease, or smaller increase, than was shown during the same period by numbers in Britain and Ireland which were taken as an index of the total W-European winter populations. Changes varied considerably between species, and were correlated with their distribution within the estuary. Species concentrated in the eastern sector, where most habitat loss occurred, declined more than species with a more westerly distribution.Results indicate that intertidal foragers forced to move from the enclosed parts of the estuary were not generally able to settle into the remaining intertidal areas. Both dispersal to adjacent areas (mainly by dabbling ducks) and mortality during severe winter weather (in some wader species) may have contributed to the declines. Populations of intertidal foragers apparently were (and consequently still are) close to carrying capacity, and further changes in capacity, as foreseen from geomorphological changes still under way in the estuary, are likely to be reflected in bird populations.Numbers of waders moulting in the Oosterschelde in late summer declined strongly compared to numbers in other seasons. Increased disturbance due to recreational activities may have played a role during this time of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号