首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium marinum is difficult to distinguish from other species of Mycobacterium isolated from fish using biochemical methods. Here, we used genetic and proteomic analyses to distinguish three Mycobacterium strains: M. marinum strains MB2 and Europe were isolated from tropical and marine fish in Thailand and Europe, and Mycobacterium sp. 012931 strain was isolated from yellowtail in Japan. In phylogenetic trees based on gyrB, rpoB, and Ag85B genes, Mycobacterium sp. 012931 clustered with M. marinum strains MB2 and Europe, but in trees based on 16S rRNA, hsp65, and Ag85A genes Mycobacterium sp. 012931 did not cluster with the other strains. In proteomic analyses using a Bruker matrix-assisted laser desorption ionization Biotyper, the mass profile of Mycobacterium sp. 012931 differed from the mass profiles of the other two fish M. marinum strains. Therefore, Mycobacterium sp. 012931 is similar to M. marinum but is not the same, suggesting that it could be a subspecies of M. marinum.  相似文献   

2.
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T m) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100?% for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100?%, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.  相似文献   

3.
Mycobacterium is a genus within the order Actinomycetales that comprises of a large number of well-characterized species, several of which includes pathogens known to cause serious disease in human and animal. Here, we report the whole genome sequence of Mycobacterium sp. strain 012931 isolated from the marine fish, yellowtail (Seriola quinqueradiata). Mycobacterium sp. 012931 is a fish pathogen causing serious damage to aquaculture farms in Japan. DNA dot plot analysis showed that Mycobacterium sp. 012931 was more closely related to Mycobacterium marinum when compared across several Mycobacterium species. However, little conservation of the gene order was observed between Mycobacterium sp. 012931 and M. marinum genome. The annotated 5,464 genes of Mycobacterium sp. 012931 was classified into 26 subsystems. The insertion/deletion gene analysis shows Mycobacterium sp. 012931 had 643 unique genes that were not found in the M. marinum strains. In the virulence, disease, and defense subsystem, both insertion and deletion genes of Mycobacterium sp. 012931 were associated with the PPE gene cluster of Mycobacteria. Of seven plcB genes in Mycobacterium sp. 012931, plcB_2 and plcB_3 showed low identities with those of M. marinum strains. Therefore, Mycobacterium sp. 012931 has differences on genetic and virulence from M. marinum and may induce different interaction mechanisms between host and pathogen.  相似文献   

4.
Mycobacterium marinum is a major causative agent of mycobacteriosis in fish that has a broad range of hosts, including in human isolates. So far, genomic analyses have focused on the human isolate. Here, we compared the draft genome sequences of two strains of M. marinum isolated from fish (MB2 and Europe) with the M. marinum M isolated from humans. M. marinum MB2 and Europe have single, circular chromosomes of 6,134,389 and 6,029,340 bp, and average G + C contents of 65.7 and 65.5 %, respectively. A total of 5,464 coding DNA sequences were annotated in both M. marinum MB2 and Europe genome. Dot plot analyses showed that M. marinum MB2 and Europe were closer to M. marinum M when compared to three other Mycobacterium species. The insertion/deletion gene analysis showed that M. marinum MB2 and Europe contained 342 and 487 genes that were not found in M. marinum M, and lacked 625 and 776 genes found in M. marinum M, respectively. Most of the inserted and deleted genes were classified in the fatty acid, lipid, and isoprenoid subsystem and the virulence, disease, and defense subsystem. Therefore, these results provide insights into the genomic diversity associated with variable hosts and pathogens.  相似文献   

5.
A molecular characterization of two Mycobacterium marinum genes, 16S rRNA and hsp65, was carried out with a total of 21 isolates from various species of fish from both marine and freshwater environments of Israel, Europe, and the Far East. The nucleotide sequences of both genes revealed that all M. marinum isolates from fish in Israel belonged to two different strains, one infecting marine (cultured and wild) fish and the other infecting freshwater (cultured) fish. A restriction enzyme map based on the nucleotide sequences of both genes confirmed the divergence of the Israeli marine isolates from the freshwater isolates and differentiated the Israeli isolates from the foreign isolates, with the exception of one of three Greek isolates from marine fish which was identical to the Israeli marine isolates. The second isolate from Greece exhibited a single base alteration in the 16S rRNA sequence, whereas the third isolate was most likely a new Mycobacterium species. Isolates from Denmark and Thailand shared high sequence homology to complete identity with reference strain ATCC 927. Combined analysis of the two gene sequences increased the detection of intraspecific variations and was thus of importance in studying the taxonomy and epidemiology of this aquatic pathogen. Whether the Israeli M. marinum strain infecting marine fish is endemic to the Red Sea and found extremely susceptible hosts in the exotic species imported for aquaculture or rather was accidentally introduced with occasional imports of fingerlings from the Mediterranean Sea could not be determined.  相似文献   

6.
7.
The present study analysed the incidence of mycobacteria in apparently healthy looking freshwater aquarium fish in Uttar Pradesh (State), India. Sixty fish belonging to eight different species were collected from six aquarium shops in different cities and processed for isolation of Mycobacterium species. Using the initial protocol of decontamination of tissue homogenates (with 1N HCl & 2N NaOH) and incubation at 30°C for 2 months, Mycobacterium sp. was isolated from 25% of the fish. The isolates were identified by standard biochemical tests. A 441 bp fragment of the hsp65 gene was amplified and digested by two fastdigest restriction enzymes, BstEII and HaeIII. Digested products were analysed using agarose gel electrophoresis. Sequencing of amplified fragments of the hsp65 gene was also performed. Isolates were identified as: five isolates of M. abscessus, three M. gordonae, two M. fortuitum, two M. conceptionense, two M. parascrofulaceum, and one isolate of M. senegalense. Mycobacterial incidence in apparently healthy looking freshwater aquarium fish is dreadful and the study is relevant because of the mycobacterial diversity related to aquarium fish and its zoonotic importance. All Mycobacterium species isolated in this study are well known pathogens in humans as well as fish.  相似文献   

8.
In Japan, a Mycobacterium marinum‐like mycobacterium was isolated from the yellowtail, Seriola quinqueradiata. The species was identified as M. marinum by a commercial mycobacterial DNA‐DNA hybridization kit. Nevertheless, PCR restriction analysis of the DNA of its RNA polymerase β‐subunit gene definitively showed that this Mycobacterium sp. was M. ulcerans. PCR analysis revealed the genotypic characteristics of M. ulcerans in the Mycobacterium sp., only the mup053 gene sequence being absent, as has been found previously in other piscine mycobacteria such as M. marinum strains DL240490 and DL045 and M. pseudoshottsii. With one exception, this Mycobacterium sp. and M. pseudoshottsii had identical 16S rRNA gene sequences, which is also probably true of M. marinum strains DL240490 and DL045. Similarly, according to comparisons of the 16S rRNA gene, ITS region, and hsp65 gene sequences, this Mycobacterium sp. is more closely related to M. pseudoshottsii than to M. ulcerans or M. marinum. A PCR product of approximately 2000 bp was amplified from region of difference 9 in the Mycobacterium sp. The nucleotide sequence revealed insertion of IS2404, the sequence of which is 1366 bp long. The novel single nucleotide polymorphisms identified in this region distinguished this Mycobacterium sp. from M. marinum strain DL240490 and M. pseudoshottsii. The present findings raise the possibility that these species have a common ancestor. Further studies are required to improve our understanding of the relationship between their geographical origin and genetic diversity.  相似文献   

9.
The ability of non-tuberculous mycobacteria to form biofilms may allow for their increased resistance to currently used biocides in medical and industrial settings. This study examines the biofilm growth of Mycobacterium fortuitum and Mycobacterium marinum, using the MBEC™ assay system, and compares the susceptibility of planktonic and biofilm cells to commercially available biocides. With scanning electron microscopy, both M. fortuitum and M. marinum form biofilms that are morphologically distinct. Biocide susceptibility testing suggested that M. fortuitum biofilms displayed increased resistance over their planktonic state. This is contrasted with M. marinum biofilms, which were generally as or more susceptible over their planktonic state. Received: 15 February 2002 / Accepted: 28 March 2002  相似文献   

10.
Conventional identification of mycobacteria is based on the analysis of their phenotypic and biochemical characteristics after culture; thus this method is time-consuming, laborious, and is not always conclusive. Developing a fast and accurate method for rapid identification of Mycobacterium species is in urgent need for early diagnosis of mycobacteriosis and effective patient management. In this study, an efficient and affordable novel multiplex probe array which allows simultaneous identification of 15 medically important mycobacterial species was developed. A pair of genus-specific primers and a set of genus- and species-specific probes were designed according to the conserved and polymorphic regions of the 16S rRNA gene, internal transcribed spacer (ITS) sequence, and 23S rRNA gene of mycobacteria. This probe array was applied for the identification of 78 clinical mycobacterial isolates recovered from Henan, China. The results showed that the specificity and sensitivity of the probe array were 100% for both genus-specific probe and Mycobacterium tuberculosis complex-specific probe. Among 52 isolates of nontuberculous mycobacteria, 43 isolates (82.7%) can be rapidly identified to the species level. Genetic variability of 16S-23S rRNA gene ITS region in M. avium, M. intracellulare, M. chelonae, M. abscessus and M. fortuitum were analyzed. With the accumulation of the sequences of ITS identified and further optimization of probes, the multiplex probe array has the potential to be developed into a practical tool for rapid and accurate identification of mycobacterial species in clinical laboratory.  相似文献   

11.
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium‐containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid‐bound mycobactin (MBT) and the water‐soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe‐MBT or Fe‐cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe‐cMBT promoted the growth of wild‐type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild‐type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra‐ and intracellular growth of the pathogen.  相似文献   

12.
Seven hundred fifty-four strains of mycobacteria were examined using 97 characters, and a “Hypothetical Mean Organism” (HMO) was prepared for each species using numerical classification. The species could be defined as a group of strains showing a mean S-value of 90% or more to a HMO and showing mean S-values of 89% or less to other HMOs. The following species were recognized: (1) M. tuberculosis, combining M. tuberculosis and M. bovis into one species; (2) M. kansasii; (3) M. novum; (4) M. avium, combining M. avium, M. nonchromogenicum, M. gastri, M. intracellulare and M. scrofulaceum into one species; (5) M. marinum; (6) M. thermoresistibile; (7) M. chitae; (8) M. borstelense; (9) M. abscessus; (10) M. fortuitum; (11) M. phlei; (12) M. aurum; (13) M. parafortuitum; (14) M. lacticola; (15) M. smegmatis. Dendrogram of the species showed two main stems, indicating that the genus Mycobacterium be divided into two subgenera, subgenus Mycobacterium (from M. tuberculosis to M. chitae) and subgenus My cornycobacterium (from M. borstelense to M. smegmatis). Some discrepancy was noted between the results of numerical classification using HMOs and that of the “proper” numerical classification, and this discrepancy is discussed.  相似文献   

13.
Striped bass (Morone saxatilis) in the Chesapeake Bay are currently experiencing a very high prevalence of mycobacteriosis associated with newly described Mycobacterium species, Mycobacterium pseudoshottsii and M. shottsii. The ecology of these mycobacteria outside the striped bass host is currently unknown. In this work, we developed quantitative real-time PCR assays for M. pseudoshottsii and M. shottsii and applied these assays to DNA extracts from Chesapeake Bay water and sediment samples, as well as to tissues from two dominant prey of striped bass, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli). Mycobacterium pseudoshottsii was found to be ubiquitous in water samples from the main stem of the Chesapeake Bay and was also present in water and sediments from the Rappahannock River, Virginia. M. pseudoshottsii was also detected in menhaden and anchovy tissues. In contrast, M. shottsii was not detected in water, sediment, or prey fish tissues. In conjunction with its nonpigmented phenotype, which is frequently found in obligately pathogenic mycobacteria of humans, this pattern of occurrence suggests that M. shottsii may be an obligate pathogen of striped bass.Mycobacteriosis is a common disease affecting a large variety of wild and aquacultured fishes worldwide (9). Chronic disease is most commonly observed and is characterized by granulomatous inflammation that may affect all host tissues. External clinical signs include scale loss, dermal ulceration, spinal defects, emaciation, and ascites (5, 6, 16, 25, 31).Mycobacteriosis in Chesapeake Bay striped bass (Morone saxatilis) was first observed in 1997 from histologic findings of acid-fast bacilli in granulomatous lesions (W. Vogelbein, unpublished data). Since the initial finding, surveys have demonstrated a very high prevalence of this disease in Chesapeake Bay striped bass, exceeding 50% in many samples (8, 17). Concomitantly with detection of high prevalence, tag recapture analysis has indicated that natural, nonfishing mortality of Chesapeake Bay striped bass has increased since 1999 (13), and modeling of apparent prevalence data has indicated that some mortality is associated with disease (8). Because the striped bass is an ecologically and economically important finfish along the U.S. Atlantic coast, the high prevalence of this disease creates considerable concern about the continuing health of the resource.Mycobacteriosis of fishes has traditionally been considered to be caused by Mycobacterium marinum, M. fortuitum, or M. chelonae; however, the recognized diversity of Mycobacterium spp. infecting fishes has increased markedly in recent years (9). To date, neither M. fortuitum nor M. chelonae have been isolated from internal tissues of striped bass in the Chesapeake Bay, and M. marinum has been cultured from only a small fraction (3%) of fish (20). Instead, a variety of slow-growing mycobacteria have been isolated, dominated by the recently described species M. pseudoshottsii and M. shottsii (9, 20-22). The 16S rRNA gene sequences of M. pseudoshottsii, M. shottsii, M. marinum, and M. ulcerans are highly similar (≥99.4%), and like M. ulcerans, M. pseudoshottsii possesses the insertion sequences IS2404 and IS2606 and produces mycolactone toxin (19). M. shottsii has been reported to be positive for IS2404 under specific PCR conditions by some authors (22), but not by others (10), and this species is not known to produce mycolactone. IS2606 has been reported to amplify weakly or not at all in M. shottsii (22). M. pseudoshottsii and M. shottsii differ in pigment production, with the former being a photochromogen and the latter being nonpigmented (22).In this study, we performed a quantitative real-time PCR-based survey of the presence and density of M. pseudoshottsii and M. shottsii in water and sediments of Chesapeake Bay, as well as in two dominant prey of striped bass, the Atlantic menhaden (Brevoortia tyrannus) and the bay anchovy (Anchoa mitchilli) (12, 30). Mycobacterium pseudoshottsii was detected by amplification of IS2404 in a manner similar to that used in previous studies (7, 24). We also amplified and sequenced mycobacterial interspersed repetitive unit (MIRU) loci from menhaden, water, and sediment samples in order to confirm that IS2404 amplification in these samples was likely to represent the presence of M. pseudoshottsii and not another IS2404-positive bacterium.No unique insertion sequences have yet been described for M. shottsii, and the high degree of similarity between M. pseudoshottsii and M. shottsii in genes for which sequences are available (e.g., hsp60, erp, 16S rRNA, 23S rRNA, internal transcribed spacer [ITS]) makes development of M. shottsii-specific assays problematic. We therefore performed genomic subtractive hybridization in a manner similar to that originally described by Akopyants et al. (3) to characterize sequences specific to M. shottsii relative to M. pseudoshottsii. An M. shottsii-specific quantitative PCR (qPCR) assay was developed to target sequences identified in this manner.  相似文献   

14.
Specific identification of mycobacteria is of clinical relevance since treatment varies according to the Mycobacterium species causing infection. All mycobacterial isolates are currently identified as M. tuberculosis (MTB) or nontuberculous mycobacteria (NTM) based on p-nitro-α-acetylamino-β-hydroxypropiophenone (NAP) test, and the species spectrum of NTM-causing infections in Kuwait remains unknown. This study identified all NTM strains isolated in Kuwait from 1 October 2003 to 31 March 2004 to the species level. The mycobacteria were cultured from various clinical specimens using the BACTEC 460 TB system and NAP test was performed to differentiate MTB from NTM strains. The INNO-LiPA MYCOBACTERIA v2 assay (LiPA) was used for species-specific identification of NTM strains and some randomly selected MTB strains. The LiPA results for selected isolates were confirmed by DNA sequencing of the 16S-23S internal transcribed spacer region. A total of 325 isolates of Mycobacterium species originating from 305 individual patients were recovered during the study period, with 307 and 18 isolates identified as MTB and NTM, respectively. The LiPA correctly identified all 18 MTB isolates analyzed. Seven different NTM species were identified among 18 NTM isolates originating from 14 patients, with M. fortuitum causing the majority of NTM infections in Kuwait. One patient was infected with two NTM species. Rapid species-specific identification of NTM may help with appropriate treatment regimens for proper patient management. The DNA sequencing data reported in this study are deposited in EMBL under accession numbers AM709724 to AM709731.  相似文献   

15.
The incidence of non-tuberculous mycobacteria (NTM)-related death has increased globally recently. To obtain information of the species and characterization of pathogens involved in NTM pulmonary infection in Southern-central China, we identified 160 non-tuberculous infection cases from 3995 acid-fast bacilli (AFB)-positive tuberculous suspects. We then randomly selected 101 non-tuberculous patients, isolated bacteria from their sputa and genotyped the pathogens using the 16S rRNA gene and 16S-23S rRNA internal transcribed spacer sequences. M. intracellulare (32.67%, 33/101), M. abscessus (32.67%, 33/101) and M. fortuitum (7.92%, 8/101) are identified in these isolates. Surprisingly, non-mycobacteria including Gordonia (8.91%, 9/101), Nocardia (5.94%, 6/101) and Tsukamurella (0.99%, 1/101) are also discovered, and the case of Tsukamurella pulmonis infection is first discovered in Southern-central China. Moreover, species of M. mucogenicum group, M. chubuense, M. kansasii, M. gastri, M. avium, M. porcinum and M. smegmatis are identified. In addition, nine immune compromised cases (8.91%, 9/101), including type two diabetes mellitus and HIV/AIDS are found to be infected with non-tuberculous bacteria. This study revealed the distribution and characteristics of non-tuberculous AFB pathogen infection occurred in Southern-central China, and suggested that physicians should be alert of the emerging of NTM and non-mycobacteria infection in AFB positive cases and take caution when choosing chemotherapy for tuberculosis-like pulmonary infections. Generally, this study may help with the development of new strategy for the diagnosis and treatment of mycobacterial infection.  相似文献   

16.
17.
Oxidative stress response in pathogenic mycobacteria is believed to be of significance for host-pathogen interactions at various stages of infection. It also plays a role in determining the intrinsic susceptibility to isoniazid in mycobacterial species. In this work, we characterized the oxyR-ahpC and furA-katG loci in the nontuberculous pathogen Mycobacterium marinum. In contrast to Mycobacterium smegmatis and like Mycobacterium tuberculosis and Mycobacterium leprae, M. marinum was shown to possess a closely linked and divergently oriented equivalents of the regulator of peroxide stress response oxyR and its subordinate gene ahpC, encoding a homolog of alkyl hydroperoxide reductase. Purified mycobacterial OxyR was found to bind to the oxyR-ahpC promoter region from M. marinum and additional mycobacterial species. Mobility shift DNA binding analyses using OxyR binding sites from several mycobacteria and a panel of in vitro-generated mutants validated the proposed consensus mycobacterial recognition sequence. M. marinum AhpC levels detected by immunoblotting, were increased upon treatment with H2O2, in keeping with the presence of a functional OxyR and its binding site within the promoter region of ahpC. In contrast, OxyR did not bind to the sequences upstream of the katG structural gene, and katG expression did not follow the pattern seen with ahpC. Instead, a new open reading frame encoding a homolog of the ferric uptake regulator Fur was identified immediately upstream of katG in M. marinum. The furA-katG linkage and arrangement are ubiquitous in mycobacteria, suggesting the presence of additional regulators of oxidative stress response and potentially explaining the observed differences in ahpC and katG expression. Collectively, these findings broaden our understanding of oxidative stress response in mycobacteria. They also suggest that M. marinum will be useful as a model system for studying the role of oxidative stress response in mycobacterial physiology, intracellular survival, and other host-pathogen interactions associated with mycobacterial diseases.  相似文献   

18.
The identification of rapidly growing mycobacteria (RGM) remains problematic because of evolving taxonomy, limitations of current phenotypic methods and absence of a universal gene target for reliable speciation. This study evaluated a novel method of identification of RGM by amplification of the mycobacterial 16S–23S rRNA internal transcribed spacer (ITS) followed by resolution of amplified fragments by capillary gel electrophoresis (CGE). Nineteen American Type Culture Collection (ATCC) Mycobacterium strains and 178 clinical isolates of RGM (12 species) were studied. All RGM ATCC strains generated unique electropherograms with no overlap with slowly growing mycobacteria species, including M. tuberculosis. A total of 47 electropherograms for the 178 clinical isolates were observed allowing the speciation of 175/178 (98.3%) isolates, including the differentiation of the closely related species, M. massiliense (M. abscessus subspecies bolletii) and M. abscessus (M. abscessus sensu stricto). ITS fragment size ranged from 332 to 534 bp and 33.7% of clinical isolates generated electropherograms with two distinct peaks, while the remainder where characterized with a single peak. Unique peaks (fragment lengths) were identified for 11/12 (92%) RGM species with only M. moriokaense having an indistinguishable electropherogram from a rarely encountered CGE subtype of M. fortuitum. We conclude that amplification of the 16S–23S ITS gene region followed by resolution of fragments by CGE is a simple, rapid, accurate and reproducible method for species identification and characterization of the RGM.  相似文献   

19.
Earlier studies have reported a role for lipooligosaccharides (LOSs) in sliding motility, biofilm formation, and infection of host macrophages in Mycobacterium marinum. Although a LOS biosynthetic gene cluster has recently been identified in this species, many structural features of the different LOSs (LOS-I–IV) are still unknown. This clearly hampers assessing the contribution of each LOS in mycobacterial virulence as well as structure-function-based studies of these important cell wall-associated glycolipids. In this study, we have identified an M. marinum isolate, M. marinum 7 (Mma7), which failed to produce LOS-IV but instead accumulated large amounts of LOS-III. Local genomic comparison of the LOS biosynthetic cluster established the presence of a highly disorganized region in Mma7 compared with the standard M strain, characterized by multiple genetic lesions that are likely to be responsible for the defect in LOS-IV production in Mma7. Our results indicate that the glycosyltransferase LosA alone is not sufficient to ensure LOS-IV biosynthesis. The availability of different M. marinum strains allowed us to determine the precise structure of individual LOSs through the combination of mass spectrometric and NMR techniques. In particular, we established the presence of two related 4-C-branched monosaccharides within LOS-II to IV sequences, of which one was never identified before. In addition, we provided evidence that LOSs are capable of inhibiting the secretion of tumor necrosis factor-α in lipopolysaccharide-stimulated human macrophages. This unexpected finding suggests that these cell wall-associated glycolipids represent key effectors capable of interfering with the establishment of a pro-inflammatory response.A key feature of all members of the genus Mycobacterium is a cell wall of unique and complex structure, which plays an important role in antibiotic resistance and pathogenesis of mycobacteria by modulating the host immune system and phagocytic cell functions (1). The mycobacterial cell wall includes essentially two types of lipids, the mycolic acids, which are very long chain fatty acids covalently bound to the arabinogalactan polysaccharide attached to a peptidoglycan backbone (2), and a vast array of extractable lipids/glycolipids (3). The latter include the ubiquitous trehalose dimycolate (TDM)3 and phosphatidyl mannosides (PIM) (4) as well as a vast array of species-specific lipids such as phenol glycolipids (5), phthiocerol dimycocerosates (5), sulfolipids (4), glycopeptidolipids, and lipooligosaccharides (LOSs).LOSs were found and described in Mycobacterium kansasii (68), Mycobacterium gastri (8, 9), Mycobacterium szulgai (10), Mycobacterium malmoense (11), Mycobacterium gordonae (12), Mycobacterium butyricum (13), Mycobacterium mucogenicum (14), the Canetti variant of Mycobacterium tuberculosis (15) and, more recently in Mycobacterium marinum (Mma) (16). However, they remain among the less studied mycobacterial glycolipids at a biosynthetic, structural, and functional point of view. To date, only three genes have been experimentally demonstrated to be involved in the late steps of LOS biosynthesis in M. marinum (16, 17), and one gene encodes a polyketide synthase responsible for the synthesis of the polymethyl-branched fatty acid in the Mycobacterium smegmatis LOS (18).LOSs represent highly antigenic glycoconjugates exposed to the cell surface and useful target molecules for serotyping in a given mycobacterial species. Their precise role in mycobacteria virulence as well as in the colony morphology remains unclear (19, 20). Early studies demonstrated that rough variants of M. kansasii, devoid of all LOSs, induce chronic systemic infections in mice, whereas smooth variants containing LOSs are rapidly cleared from the organs of infected animals (19, 21). It was therefore proposed that LOSs may act as avirulence factors by masking other cell wall-associated virulence factors. Accordingly, LOSs are absent in most clinical isolates of M. tuberculosis as well as in the laboratory strain H37Rv. A recent genetically based comparison of the LOS biosynthetic cluster in M. marinum and M. tuberculosis revealed that only about one-third of the genes are conserved between the two species, with the genetic locus of M. tuberculosis H37Rv containing fewer genes (17). Although recent studies suggested a possible role of LOSs in sliding motility, biofilm formation, and infection of macrophages by M. marinum (17), the precise contribution of LOSs to M. marinum pathogenesis or virulence is seriously hampered by the restricted number of isogenic strains deficient in their production and the lack of precise structural data of LOS variants. LOSs from different mycobacterial species exhibit considerable variations in the glycan core. A previous work identified the presence of four major LOS variants in M. marinum, designated LOS-I to LOS-IV (16). Through partial characterization, the structure of LOS-I was previously established as 3-O-Me-Rhap-(1–3)-Glcp-(1–3)-Glcp-(1–4)-Glcp-(1–1)-Glcp. Although all LOSs were shown to contain this common oligosaccharidic core substituted by an additional Xylp unit, LOS-II, -III, and -IV are further substituted by other unidentified monosaccharides, designated X and YZ, which leave their exact sequence largely unknown (16).In this study, we report the identification of a natural mutant of M. marinum, devoid of LOS-IV production, which allowed the production of large amounts of LOS-III and the determination of the fine structure of all LOSs. In addition, the availability of all LOS variants with defined structures has opened the possibility to undertake structure-function relationship studies. These molecules were therefore used in in vitro assays to uncover their potent biological roles.  相似文献   

20.
Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号