首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this study, we demonstrate the use of a genome-wide association mapping together with RNA-seq in a reduced number of samples, as an efficient approach to detect the causal mutation for a Mendelian disease. Junctional epidermolysis bullosa is a recessive genodermatosis that manifests with neonatal mechanical fragility of the skin, blistering confined to the lamina lucida of the basement membrane and severe alteration of the hemidesmosomal junctions. In Spanish Churra sheep, junctional epidermolysis bullosa (JEB) has been detected in two commercial flocks. The JEB locus was mapped to Ovis aries chromosome 11 by GWAS and subsequently fine-mapped to an 868-kb homozygous segment using the identical-by-descent method. The ITGB4, which is located within this region, was identified as the best positional and functional candidate gene. The RNA-seq variant analysis enabled us to discover a 4-bp deletion within exon 33 of the ITGB4 gene (c.4412_4415del). The c.4412_4415del mutation causes a frameshift resulting in a premature stop codon at position 1472 of the integrin β4 protein. A functional analysis of this deletion revealed decreased levels of mRNA in JEB skin samples and the absence of integrin β4 labeling in immunohistochemical assays. Genotyping of c.4412_4415del showed perfect concordance with the recessive mode of the disease phenotype. Selection against this causal mutation will now be used to solve the problem of JEB in flocks of Churra sheep. Furthermore, the identification of the ITGB4 mutation means that affected sheep can be used as a large mammal animal model for the human form of epidermolysis bullosa with aplasia cutis. Our approach evidences that RNA-seq offers cost-effective alternative to identify variants in the species in which high resolution exome-sequencing is not straightforward.  相似文献   

3.
Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain.  相似文献   

4.
The aim of the present study was to estimate the genetic intra-breed variability of Churra tensina and Churra lebrijana endangered breeds and to establish genetic relationships with Churra, Latxa and Merino breeds, as well as Spanish mouflon, by using 28 microsatellite markers, to provide useful information for their conservation. Allele frequencies and heterozygosity revealed high genetic variation in the two endangered breeds despite their small population size. Estimates of inbreeding coefficient (FIS) were significant for all breeds studied, except for Churra lebrijana breed. The highest inbreeding coefficient (FIS = 0.143) was found in the Spanish mouflon. Genetic differentiation tests (FST = 0.121) and assignment of individuals to populations indicated the existence of defined breed populations, and low genetic flow between these breeds. The highest pairwise Reynolds distance (DR) values were observed between Mouflon and the domestic sheep breeds. Considering only domestic sheep breeds, the Churra lebrijana breed showed the highest pairwise DR values. The lowest values were found between Latxa and the other domestic sheep, except for Churra lebrijana. Results of pairwise DR values, as well as phylogenetic tree and bottleneck analysis showed an important genetic isolation of the Churra lebrijana breed from the other Churra types, and genetic signatures of a demographic bottleneck. Finally, structure analysis of populations detected a population subdivision in the Latxa sheep breed. In conclusion, this study presents valuable insight into the existing genetic variability of two Spanish endangered breeds, as well as the first study in Spanish mouflon based on microsatellite analysis. The high degree of variability demonstrated in Churra tensina and Churra lebrijana implies that these populations are rich reservoirs of genetic diversity.  相似文献   

5.
《Small Ruminant Research》2010,91(1-3):34-40
Acetyl-CoA carboxylase (ACACA) is the rate-limiting enzyme in the biosynthesis of palmitic acid and long-chain fatty acids. The dietary intake of palmitic acid, which represents approximately 22% of sheep milk fatty acids, increases low-density lipoprotein (LDL) levels and the risk of developing human cardiovascular diseases. Following the candidate gene approach for improving sheep milk composition, and as a first step in assessing the possible influence of the ovine ACACA gene on milk fatty acid composition and its potential use as an animal genetic model of human atherosclerosis disease, we present here an investigation into the genetic variability of the ovine ACACA gene. We sequenced approximately 6.6 kb of ovine ACACA cDNA, including most of the coding sequence of the protein (except 348 bp), in Spanish Churra sheep. A total of 22 synonymous single nucleotide polymorphisms (SNPs) were identified in the analysed sequence, which were genotyped in a set of eight sheep breeds with different productive aptitudes (dairy, meat and double aptitudes). Two of the SNPs identified, SNP03 (c.1450T>C) and SNP15 (c.5134T>C), which appeared to be breed-specific variations, were situated in the gene sequence coding for the biotin-carboxylase (BC) and acetyl-CoA carboxyltransferase (ACCT) domains of the protein, respectively. Particularly interesting is SNP12 (c.4579G>A), which displayed higher frequencies in the dairy-specialised breeds relative to the meat-producing breeds. Moreover, in the dairy breeds studied, the frequency of this SNP showed a positive correlation with the degree of dairy specialisation. A previously described alternative splicing site (Ser-1200) affecting an important regulatory region of the enzyme was observed in one of the Churra animals. Despite the high genetic variability observed in this gene, none of the identified SNPs caused an amino acid change. However, these polymorphisms could be in linkage disequilibrium with other mutations showing a functional effect on the ACACA enzyme. Hence, the characterisations of the allelic variants reported herein lay the groundwork for evaluation of the potential use of these SNPs as genetic markers of fat content and fatty acid composition in sheep dairy products.  相似文献   

6.
In this study, we used the Illumina OvineSNP50 BeadChip to conduct a genome-wide association (GWA) analysis for milk production traits in dairy sheep by analyzing a commercial population of Spanish Churra sheep. The studied population consisted of a total of 1,681 Churra ewes belonging to 16 half-sib families with available records for milk yield (MY), milk protein and fat yields (PY and FY) and milk protein and fat contents (PP and FP). The most significant association identified reached experiment-wise significance for PP and FP and was located on chromosome 3 (OAR3). These results confirm the population-level segregation of a previously reported QTL affecting PP and suggest that this QTL has a significant pleiotropic effect on FP. Further associations were detected at the chromosome-wise significance level on 14 other chromosomal regions. The marker on OAR3 showing the highest significant association was located at the third intron of the alpha-lactalbumin (LALBA) gene, which is a functional and positional candidate underlying this association. Sequencing this gene in the 16 Churra rams of the studied resource population identified additional polymorphisms. One out of the 31 polymorphisms identified was located within the coding gene sequence (LALBA_g.242T>C) and was predicted to cause an amino acid change in the protein (Val27Ala). Different approaches, including GWA analysis, a combined linkage and linkage disequilibrium study and a concordance test with the QTL segregating status of the sires, were utilized to assess the role of this mutation as a putative QTN for the genetic effects detected on OAR3. Our results strongly support the polymorphism LALBA_g.242T>C as the most likely causal mutation of the studied OAR3 QTL affecting PP and FP, although we cannot rule out the possibility that this SNP is in perfect linkage disequilibrium with the true causal polymorphism.  相似文献   

7.
Normal development of the nervous system is achieved through an elaborate program of guided neuronal migration and axonal growth. In the last few years, a flood of research has dissected the molecular bases of these phenomena, and several cell-surface and extracellular matrix molecules, which are implicated in neuronal and axonal targeting processes, have been recognized. Taking this knowledge a step further, a recent paper by Tom Curran's group(1) reports the molecular cloning of the gene deleted in the autosomal recessive mouse mutation reeler, affecting cortical neuronal migration. This gene encodes reelin, a novel extracellular matrix protein.  相似文献   

8.
Ghrelin, an endogenous ligand for growth hormone secretagogue receptor, plays an important role in stimulating hormone secretion, development of gastrointestinal tract, food intake and regulating energy balance of animals. In this study we isolated the cDNA sequence of ovine Ghrelin from the abomasums of 7-day-aged lambs. Real-time PCR was used to determine the abundance of Ghrelin mRNA in lamb gastrointestinal tract, and analyze the development changes of abomasums Ghrelin mRNA expression in 0–56 days lambs, as well as find the effects of 42-day weaning on Ghrelin mRNA expression in lamb abomasums. The results showed that: (1) Ghrelin mRNA was expressed widely in gastrointestinal tract and was significantly higher in the abomasums than in other tissues (rumen, reticulum, omasum, duodenum, jejunum, ileum) (P < 0.01); (2) The expression of abomasums Ghrelin mRNA in lamb increased with the growth of age, it reached a plateau at the age of 49 days, however, got a slightly decrease at the age of 56 days; (3) The expression of abomasums Ghrelin mRNA of the 42 days-weaned groups were significantly lower than the no-weaned groups (P < 0.05), and the Ghrelin mRNA expression of the two treatments reached a maximum at the age of 49 days; (4) Correlation analysis indicated that the linear correlativity between abomasums Ghrelin mRNA expression and abomasums weight was very prominent (R2 = 0.647, P = 0.009). Our results suggested that ovine Ghrelin gene may play an important role in the development of lamb abomasums and 42-day weaning could down regulate the expression of abomasum Ghrelin mRNA, but the mechanism of these needs further research.  相似文献   

9.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of fatal recessively inherited neurodegenerative diseases of humans and animals characterised by common clinical signs and pathology. These include blindness, ataxia, dementia, behavioural changes, seizures, brain and retinal atrophy and accumulation of fluorescent lysosome derived organelles in most cells. A number of different variants have been suggested and seven different causative genes identified in humans (CLN1, CLN2, CLN3, CLN5, CLN6, CLN8 and CTSD). Animal models have played a central role in the investigation of this group of diseases and are extremely valuable for developing a better understanding of the disease mechanisms and possible therapeutic approaches. Ovine models include flocks of affected New Zealand South Hampshires and Borderdales and Australian Merinos. The ovine CLN6 gene has been sequenced in a representative selection of these sheep. These investigations unveiled the mutation responsible for the disease in Merino sheep (c.184C > T; p.Arg62Cys) and three common ovine allelic variants (c.56A > G, c.822G > A and c.933_934insCT). Linkage analysis established that CLN6 is the gene most likely to cause NCL in affected South Hampshire sheep, which do not have the c.184C > T mutation but show reduced expression of CLN6 mRNA in a range of tissues as determined by real-time PCR. Lack of linkage precludes CLN6 as a candidate for NCL in Borderdale sheep.  相似文献   

10.
Epilepsy is a common neurological condition characterized by unprovoked seizure attacks. Early brain developmental abnormalities involving neuronal migration and lamination are implicated in childhood epilepsy. Reelin, a neuronal-signaling molecule plays a crucial role in these migratory processes. Therefore, reelin gene (RELN), which is located on human chromosome 7q22 is considered as a potential candidate gene for childhood epilepsy. In this study, we recruited 63 patients with childhood-onset epilepsy and 103 healthy controls from West Bengal in India. Genomic DNA isolated from leukocytes of cases and control individuals were used for genotyping analysis of 16 markers of RELN. Case–control analysis revealed significant over-representation of G/C and (G/C+C/C) genotypes, and C allele of exon 22 G/C marker (rs362691) in cases as compared to controls. Pair-wise linkage disequilibrium analysis demonstrated two separate LD blocks with moderately high D′ values in epileptic cases. Based on these data, we have carried out haplotype case–control analysis. Even though we found over-representation of A-C haplotype of intron 12 A/C/exon 22 G/C markers and haplotype combination involving G-allele of exon 22 marker in cases and controls, respectively, the overall test was not significant. LD in this region involving this marker was also more robust in epileptic cases. Taken together, the results provide possible evidences for association of exon 22 G/C marker or any marker in the vicinity, which is in LD with this marker with epilepsy in the West Bengal population. Further investigations involving higher sample sizes are warranted to validate the present finding.  相似文献   

11.
Acute neuronopathic (type II) Gaucher disease (GD) is a devastating, untreatable neurological disorder resulting from mutations in the glucocerebrosidase gene (GBA1), with subsequent accumulation of glucosylceramide and glucosylsphingosine. Patients experience progressive decline in neurological function, with onset typically within the first three-to-six months of life and premature death before two years. Mice and drosophila with GD have been described, however little is known about the brain pathology observed in the naturally occurring ovine model of GD. We have characterised pathological changes in GD lamb brain and compared the histological findings to those in GD patient post-mortem tissue, to determine the validity of the sheep as a model of this disease. Five GD and five age-matched unaffected lamb brains were examined. We observed significant expansion of the endo/lysosomal system in GD lamb cingulate gyrus however TPP1 and cathepsin D levels were unchanged or reduced. H&E staining revealed neurons with shrunken, hypereosinophilic cytoplasm and hyperchromatic or pyknotic nuclei (red neurons) that were also shrunken and deeply Nissl stain positive. Amoeboid microglia were noted throughout GD brain. Spheroidal inclusions reactive for TOMM20, ubiquitin and most strikingly, p-Tau were observed in many brain regions in GD lamb brain, potentially indicating disturbed axonal trafficking. Our findings suggest that the ovine model of GD exhibits similar pathological changes to human, mouse, and drosophila type II GD brain, and represents a model suitable for evaluating therapeutic intervention, particularly in utero-targeted approaches.  相似文献   

12.
13.
Hepatocyte growth factor (HGF) and its receptor, c-Met, are widely expressed in the developing brain. HGF also known as scatter factor enhances cell proliferation and cell growth, and stimulates cell migration and motility. Neurons and glia produced in the neuroepithelium migrate along radial glial fibers into the cortical plate. Reelin, a glycoprotein which is produced by Cajal–Retzius cells in the marginal zone directs neuronal migration indirectly via the radial glial cells. It has been demonstrated that Disabled 1 functions downstream of reelin in a tyrosin kinase signal transduction pathway that controls appropriate cell positioning in the developing brain. In this study, administration of HGF on reelin and Disabled 1 expression in the cerebral cortex has been studied. Using Western blot, it was shown that the expression of reelin and Disabled 1 is increased in response to infusion of HGF when compared to control group. It is concluded that HGF is essential for reelin and Disabled 1 expression in the cerebral cortex of the newborn mouse. Moreover, this method may be applied to the other factors, allowing identification of molecules involved in neural cell migration.  相似文献   

14.
A previous genome scan that was conducted in Spanish Churra sheep identified a significant quantitative trait locus (QTL) for milk protein percentage (PP) on chromosome 3 (OAR3), between markers KD103 and OARVH34. The aim of this study was to replicate these results and to refine the mapped position of this QTL. To accomplish this goal, we analysed 14 new half‐sib families of Spanish Churra sheep including 1661 ewes from 29 different flocks. These animals were genotyped for 21 microsatellite markers mapping to OAR3. In addition to a classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) was performed with the aim of enhancing the resolution of the QTL mapping. The LA that was performed in this sheep population identified the presence of a highly significant QTL for PP near marker KD103 (Pc < 0.001; Pexp < 0.001). The phenotypic variance that was owing to the QTL was 2.74%. Two segregating families for the target QTL were identified in this population with QTL effect estimates of 0.47 and 0.95 SD. The LDLA identified the same QTL as the previous analyses with a high level of statistical significance (P = 9.184 E‐11) and narrowed the confidence interval (CI) to a 13 cM region. These results confirm the segregation of the previously identified OAR3 QTL that influences PP in Spanish Churra sheep. Future research will aim to increase the marker density across the refined CI and to analyse the corresponding candidate genes to identify the allelic variant or variants that underlie this genetic effect.  相似文献   

15.
Autism is a childhood neuro-developmental disorder, and Reelin (RELN) is an important candidate gene for influencing autism. This study aimed at investigating the influence of genetic variants of the RELN gene on autism susceptibility. In this study, 205 autism patients and 210 healthy controls were recruited and the genetic variants of the RELN gene were genotyped by the created restriction site-polymerase chain reaction (CRS-PCR) method. The influence of genetic variants on autism susceptibility was analyzed by association analysis, and the g.296596G > A genetic variant in exon10 of the RELN gene was detected. The frequencies of allele/genotype in autistic patients were significantly different from those in healthy controls, and a statistically significant association was detected between this genetic variant and autism susceptibility. Our data lead to the inference that the g.296596G > A genetic variant in the RELN gene has a potential influence on autism susceptibility in the Chinese Han population.  相似文献   

16.
Intracellular vesicle transport pathways are critical for neuronal survival and central nervous system development. The Vps-C complex regulates multiple vesicle transport pathways to the lysosome in lower organisms. However, little is known regarding its physiological function in mammals. We deleted Vps18, a central member of Vps-C core complex, in neural cells by generating Vps18F/F; Nestin-Cre mice (Vps18 conditional knock-out mice). These mice displayed severe neurodegeneration and neuronal migration defects. Mechanistic studies revealed that Vps18 deficiency caused neurodegeneration by blocking multiple vesicle transport pathways to the lysosome, including autophagy, endocytosis, and biosynthetic pathways. Our study also showed that ablation of Vps18 resulted in up-regulation of β1 integrin in mouse brain probably due to lysosome dysfunction but had no effects on the reelin pathway, expression of N-cadherin, or activation of JNK, which are implicated in the regulation of neuronal migration. Finally, we demonstrated that knocking down β1 integrin partially rescued the migration defects, suggesting that Vps18 deficiency-mediated up-regulation of β1 integrin may contribute to the defect of neuronal migration in the Vps18-deficient brain. Our results demonstrate important roles of Vps18 in neuron survival and migration, which are disrupted in multiple neural disorders.  相似文献   

17.
Migration of neurons during cortical development is often assumed to rely on purely post-proliferative reelin signaling. However, Notch signaling, long known to regulate neural precursor formation and maintenance, is required for the effects of reelin on neuronal migration. Here, we show that reelin gain-of-function causes a higher expression of Notch target genes in radial glia and accelerates the production of both neurons and intermediate progenitor cells. Converse alterations correlate with reelin loss-of-function, consistent with reelin controlling Notch signaling during neurogenesis. Ectopic expression of reelin in isolated clones of progenitors causes a severe reduction in neuronal differentiation. In mosaic cell cultures, reelin-primed progenitor cells respond to wild-type cells by further decreasing neuronal differentiation, consistent with an increased sensitivity to lateral inhibition. These results indicate that reelin and Notch signaling cooperate to set the pace of neocortical neurogenesis, a prerequisite for proper neuronal migration and cortical layering.  相似文献   

18.
Suckling lamb meat is traditionally produced in Mediterranean Europe. Breed can affect the quality of the lamb carcass and meat. This study is aimed at comparing the carcass and meat quality between suckling lambs from a local and a non-native dairy breed, Churra and Assaf. Churra is included in the Spanish Protected Geographical Indication (PGI) ‘Lechazo de Castilla y León’, whereas Assaf is not. However, Assaf breeders have requested the inclusion of the breed in the PGI. Carcasses and meat from 16 male lambs (eight Churra and eight Assaf) were used in this study. The lambs were all raised under an intensive rearing system and fed on a milk substitute to minimise maternal influence. The carcasses were evaluated for conformation, fatness, joint and leg tissue proportions and the meat was analysed for composition (i.e. proximate composition, iron, haematin, fatty acids and volatiles) and technological quality traits (i.e. texture, water holding capacity, colour and lipid stability). Churra carcasses were larger than Assaf carcasses. However, the proportions of commercial joints and main tissues did not differ between breeds. Cavity and intermuscular leg fat, but not total leg fat, were higher in Churra carcasses. Churra meat showed a higher proportion of n-6 fatty acids, higher redness and better colour stability during aerobic storage. In contrast, Assaf lamb was more resistant to lipid oxidation after cooking. This is a preliminary study to measure the influence of breed on a wide range of quality characteristics in Churra and Assaf suckling lamb carcass and meat. It may be of relevance for breeders, consumers and food policy makers, setting the basis for future studies that include larger commercial populations.  相似文献   

19.
We have previously described a rat autosomal recessive mutation, creeping (cre), causing severe ataxia and disarrangement of neuronal cells in the central nervous system. The mutant strain has recently been successfully inbred, named Komeda Zucker creeping (KZC) rat. In the present study, we have performed a genetic analysis of the creeping mutation, and mapped it to rat Chromosome (Chr) 4. Comparative mapping, together with the similarity of the phenotype, suggested that the creeping mutation is homologous to the mouse reeler mutation. In fact, reelin expression was markedly reduced in the homozygous mutant (cre/cre) animals compared with the normal littermates. Thus, the KZC rat should become a useful biological model with a novel mutation in the reelin gene. Received: 25 June 1999 / Accepted: 19 October 1999  相似文献   

20.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of fatal recessively inherited neurodegenerative diseases of humans and animals characterised by common clinical signs and pathology. These include blindness, ataxia, dementia, behavioural changes, seizures, brain and retinal atrophy and accumulation of fluorescent lysosome derived organelles in most cells. A number of different variants have been suggested and seven different causative genes identified in humans (CLN1, CLN2, CLN3, CLN5, CLN6, CLN8 and CTSD). Animal models have played a central role in the investigation of this group of diseases and are extremely valuable for developing a better understanding of the disease mechanisms and possible therapeutic approaches. Ovine models include flocks of affected New Zealand South Hampshires and Borderdales and Australian Merinos. The ovine CLN6 gene has been sequenced in a representative selection of these sheep. These investigations unveiled the mutation responsible for the disease in Merino sheep (c.184C>T; p.Arg62Cys) and three common ovine allelic variants (c.56A>G, c.822G>A and c.933_934insCT). Linkage analysis established that CLN6 is the gene most likely to cause NCL in affected South Hampshire sheep, which do not have the c.184C>T mutation but show reduced expression of CLN6 mRNA in a range of tissues as determined by real-time PCR. Lack of linkage precludes CLN6 as a candidate for NCL in Borderdale sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号