首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

In the Mascarenes, a young oceanic archipelago composed of three main islands, the Dombeyoideae (Malvaceae) have diversified extensively with a high endemism rate. With the exception of the genus Trochetia, Mascarene Dombeyoideae are described as dioecious whereas Malagasy and African species are considered to be monocline, species with individuals bearing hermaphrodite/perfect flowers. In this study, the phylogenetic relationships were reconstructed to clarify the taxonomy, understand the phylogeographic pattern of relationships and infer the evolution of the breeding systems for the Mascarenes Dombeyoideae.

Methods

Parsimony and Bayesian analysis of four DNA markers (ITS, rpl16 intron and two intergenic spacers trnQ-rsp16 and psbM-trnD) was used. The molecular matrix comprised 2985 characters and 48 taxa. The Bayesian phylogeny was used to infer phylogeographical hypotheses and the evolution of breeding systems.

Key Results

Parsimony and Bayesian trees produced similar results. The Dombeyoideae from the Mascarenes are polyphyletic and distributed among four clades. Species of Dombeya, Trochetia and Ruizia are nested in the same clade, which implies the paraphyly of Dombeya. Additionally, it is shown that each of the four clades has an independent Malagasy origin. Two adaptive radiation events have occurred within two endemic lineages of the Mascarenes. The polyphyly of the Mascarene Dombeyoideae suggests at least three independent acquisitions of dioecy.

Conclusions

This molecular phylogeny highlights the taxonomic issues within the Dombeyoideae. Indeed, the limits and distinctions of the genera Dombeya, Trochetia and Ruizia should be reconsidered. The close phylogeographic relationships between the flora of the Mascarenes and Madagascar are confirmed. Despite their independent origins and a distinct evolutionary history, each endemic clade has developed a different breeding systems (dioecy) compared with the Malagasy Dombeyoideae. Sex separation appears as an evolutionary convergence and may be the consequence of selective pressures particular to insular environments.  相似文献   

2.

Background and Aim

Anagenesis (also known as phyletic speciation) is an important process of speciation in endemic species of oceanic islands. We investigated genetic variation in Acer okamotoanum, an anagenetically derived species endemic to Ullung Island, South Korea, to infer genetic consequences of anagenesis in comparison with other groups that have undergone cladogenesis (and adaptive radiation).

Methods

We examined genetic variation based on eight polymorphic microsatellite markers from 145 individuals of A. okamotoanum and 134 individuals of its putative progenitor A. mono. We employed standard population genetic analyses, clustering analyses, Bayesian clustering analyses in STRUCTURE and bottleneck analyses.

Key Results

Based on both the Neighbor–Joining tree and Bayesian clustering analyses, clear genetic distinctions were found between the two species. Genetic diversity in terms of allelic richness and heterozygosity shows slightly lower levels in A. okamotoanum in comparison with A. mono. Bayesian clustering analyses showed a relatively high F-value in the cluster of A. okamotoanum, suggesting a strong episode of genetic drift during colonization and speciation. There was no clear evidence of a bottleneck based on allelic frequency distribution and excess of observed heterozygotes, but the M-ratio indicated a historical bottleneck in several populations of A. okamotoanum. No geographical genetic structure within the island was found, and the genetic variation among populations of A. okamotoanum was quite low.

Conclusions

We hypothesized that genetic consequences of oceanic-endemic plants derived via anagenesis would be quite different from those derived via cladogenesis. Populations of A. okamotoanum form a cluster and are clearly differentiated from A. mono, which suggests a single origin for the anagenetically derived island endemic. No pattern of geographical differentiation of populations occurs in A. okamotoanum, which supports the concept of initial founder populations diverging through time by accumulation of mutations in a relatively uniform environment without further specific differentiation.  相似文献   

3.

Background and Aims

When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecological preferences, exceeding those found in most studies of hybridization to date.

Methods

Nuclear microsatellite markers (nSSRs), genotyping methods and morphometric analyses were used to uncover patterns of hybridization and the role of gene flow in morphological differentiation between sympatric species.

Key Results

The complexity of hybridization patterns differed markedly between sites, however, signals of introgression were present at all sites. One site provided evidence of a large hybrid swarm and the likely presence of multiple hybrid generations and backcrosses, another site a handful of early generational hybrids and a third site only traces of admixture from a past hybridization event. The presence of cryptic hybrids and a pattern of morphological bimodality amongst hybrids often disguised the extent of underlying genetic admixture.

Conclusions

Distinct parental habitats and phenotypes are expected to form barriers that contribute to the rapid reversion of hybrid populations to their parental character state, due to limited opportunities for hybrid/intermediate advantage. Furthermore, strong genomic filters may facilitate continued gene flow between species without the danger of assimilation. Stochastic fire events facilitate temporal phenological isolation between species and may partly explain the bi-directional and site-specific patterns of hybridization observed. Furthermore, the findings suggest that F1 hybrids are rare, and backcrosses may occur rapidly following these initial hybridization events.  相似文献   

4.

Background

The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics.

Methods

In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm) of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set.

Results

The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found.

Conclusion

This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy-Weinberg and linkage equilibrium, performs well under different simulated scenarios and with real data. Therefore, it could be a useful tool to determine genetically homogeneous groups, especially in those situations where the number of clusters is high, with complex population structure and where Hardy-Weinberg and/or linkage equilibrium are present.  相似文献   

5.

Background and Aims

The coffee genus (Coffea) comprises 124 species, and is indigenous to the Old World Tropics. Due to its immense economic importance, Coffea has been the focus of numerous genetic diversity studies, but despite this effort it remains insufficiently studied. In this study the genetic diversity and genetic structure of Coffea across Africa and the Indian Ocean islands is investigated.

Methods

Genetic data were produced using 13 polymorphic nuclear microsatellite markers (simple sequence repeats, SSRs), including seven expressed sequence tag-SSRs, and the data were analysed using model- and non-model-based methods. The study includes a total of 728 individuals from 60 species.

Key Results

Across Africa and the Indian Ocean islands Coffea comprises a closely related group of species with an overall pattern of genotypes running from west to east. Genetic structure was identified in accordance with pre-determined geographical regions and phylogenetic groups. There is a good relationship between morpho-taxonomic species delimitations and genetic units. Genetic diversity in African and Indian Ocean Coffea is high in terms of number of alleles detected, and Madagascar appears to represent a place of significant diversification in terms of allelic richness and species diversity.

Conclusions

Cross-species SSR transferability in African and Indian Ocean islands Coffea was very efficient. On the basis of the number of private alleles, diversification in East Africa and the Indian Ocean islands appears to be more recent than in West and West-Central Africa, although this general trend is complicated in Africa by the position of species belonging to lineages connecting the main geographical regions. The general pattern of phylogeography is not in agreement with an overall east to west (Mascarene, Madagascar, East Africa, West Africa) increase in genome size, the high proportion of shared alleles between the four regions or the high numbers of exclusive shared alleles between pairs or triplets of regions.  相似文献   

6.

Background and Aims

While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone.

Methods

Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses.

Key Results

Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5–1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group.

Conclusions

The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations.  相似文献   

7.

Background

Linguistic, cultural and genetic characteristics of the Malagasy suggest that both Africans and Island Southeast Asians were involved in the colonization of Madagascar. Populations from the Indonesian archipelago played an especially important role because linguistic evidence suggests that the Malagasy language branches from the Southeast Barito language family of southern Borneo, Indonesia, with the closest language spoken today by the Ma’anyan. To test for a genetic link between Malagasy and these linguistically related Indonesian populations, we studied the Ma’anyan and other Indonesian ethnic groups (including the sea nomad Bajo) that, from their historical and linguistic contexts, may be modern descendants of the populations that helped enact the settlement of Madagascar.

Result

A combination of phylogeographic analysis of genetic distances, haplotype comparisons and inference of parental populations by linear optimization, using both maternal and paternal DNA lineages, suggests that Malagasy derive from multiple regional sources in Indonesia, with a focus on eastern Borneo, southern Sulawesi and the Lesser Sunda islands.

Conclusion

Settlement may have been mediated by ancient sea nomad movements because the linguistically closest population, Ma’anyan, has only subtle genetic connections to Malagasy, whereas genetic links with other sea nomads are more strongly supported. Our data hint at a more complex scenario for the Indonesian settlement of Madagascar than has previously been recognized.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1394-7) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background and Aims

Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past ∼150 years that presumably arose by autopolyploidization of a triploid hybrid, C. × insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation.

Methods

Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas.

Key Results

It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. × insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. × insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins.

Conclusions

Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. × insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex case of recurrent hybridization and polyploidization events, and highlights the role of triploids that promoted the origin of trigenomic hybrids.  相似文献   

9.

Background and Aims

The oriental forest ecosystem in Madagascar has been seriously impacted by fragmentation. The pattern of genetic diversity was analysed on a tree species, Dalbergia monticola, which plays an important economic role in Madagascar and is one of the many endangered tree species in the eastern forest.

Methods

Leaves from 546 individuals belonging to 18 small populations affected by different levels of fragmentation were genotyped using eight nuclear (nuc) and three chloroplast (cp) microsatellite markers.

Key Results

For nuclear microsatellites, allelic richness (R) and heterozygosity (He,nuc) differed between types of forest: R = 7·36 and R = 9·55, He,nuc = 0·64 and He,nuc = 0·80 in fragmented and non-fragmented forest, respectively, but the differences were not significant. Only the mean number of alleles (Na,nuc) and the fixation index FIS differed significantly: Na,nuc = 9·41 and Na,nuc = 13·18, FIS = 0·06 and FIS = 0·15 in fragmented and non-fragmented forests, respectively. For chloroplast microsatellites, estimated genetic diversity was higher in non-fragmented forest, but the difference was not significant. No recent bottleneck effect was detected for either population. Overall differentiation was low for nuclear microsatellites (FST,nuc = 0·08) and moderate for chloroplast microsatellites (FST,cp = 0·49). A clear relationship was observed between genetic and geographic distance (r = 0·42 P < 0·01 and r = 0·42 P = 0·03 for nuclear and chloroplast microsatellites, respectively), suggesting a pattern of isolation by distance. Analysis of population structure using the neighbor-joining method or Bayesian models separated southern populations from central and northern populations with nuclear microsatellites, and grouped the population according to regions with chloroplast microsatellites, but did not separate the fragmented populations.

Conclusions

Residual diversity and genetic structure of populations of D. monticola in Madagascar suggest a limited impact of fragmentation on molecular genetic parameters.  相似文献   

10.

Background and Aims

The potential for gene exchange between species with different ploidy levels has long been recognized, but only a few studies have tested this hypothesis in situ and most of them focused on not more than two co-occurring species. In this study, we examined hybridization patterns in two sites containing three species of the genus Dactylorhiza (diploid D. incarnata and D. fuchsii and their allotetraploid derivative D. praetermissa).

Methods

To compare the strength of reproductive barriers between diploid species, and between diploid and tetraploid species, crossing experiments were combined with morphometric and molecular analyses using amplified fragment length polymorphism markers, whereas flow cytometric analyses were used to verify the hybrid origin of putative hybrids.

Key Results

In both sites, extensive hybridization was observed, indicating that gene flow between species is possible within the investigated populations. Bayesian assignment analyses indicated that the majority of hybrids were F1 hybrids, but in some cases triple hybrids (hybrids with three species as parents) were observed, suggesting secondary gene flow. Crossing experiments showed that only crosses between pure species yielded a high percentage of viable seeds. When hybrids were involved as either pollen-receptor or pollen-donor, almost no viable seeds were formed, indicating strong post-zygotic reproductive isolation and high sterility.

Conclusions

Strong post-mating reproductive barriers prevent local breakdown of species boundaries in Dactylorhiza despite frequent hybridization between parental species. However, the presence of triple hybrids indicates that in some cases hybridization may extend the F1 generation.  相似文献   

11.

Background and Aims

Salvia is the largest genus in Lamiaceae and it has recently been found to be non-monophyletic. Molecular data on Old World Salvia are largely lacking. In this study, we present data concerning Salvia in Africa. The focus is on the colonization of the continent, character evolution and the switch of pollination systems in the genus.

Methods

Maximum likelihood and Bayesian inference were used for phylogenetic reconstruction. Analyses were based on two nuclear markers [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and one plastid marker (rpl32-trnL). Sequence data were generated for 41 of the 62 African taxa (66 %). Mesquite was used to reconstruct ancestral character states for distribution, life form, calyx shape, stamen type and pollination syndrome.

Key Results

Salvia in Africa is non-monophyletic. Each of the five major regions in Africa, except Madagascar, was colonized at least twice, and floristic links between North African, south-west Asian and European species are strongly supported. The large radiation in Sub-Saharan Africa (23 species) can be traced back to dispersal from North Africa via East Africa to the Cape Region. Adaptation to bird pollination in southern Africa and Madagascar reflects parallel evolution.

Conclusions

The phenotypic diversity in African Salvia is associated with repeated introductions to the continent. Many important evolutionary processes, such as colonization, adaptation, parallelism and character transformation, are reflected in this comparatively small group. The data presented in this study can help to understand the evolution of Salvia sensu lato and other large genera.  相似文献   

12.

Background and Aims

Interspecific hybridization and polyploidy are key processes in plant evolution and are responsible for ongoing genetic diversification in the genus Sorbus (Rosaceae). The Avon Gorge, Bristol, UK, is a world ‘hotspot’ for Sorbus diversity and home to diploid sexual species and polyploid apomictic species. This research investigated how mating system variation, hybridization and polyploidy interact to generate this biological diversity.

Methods

Mating systems of diploid, triploid and tetraploid Sorbus taxa were analysed using pollen tube growth and seed set assays from controlled pollinations, and parent–offspring genotyping of progeny from open and manual pollinations.

Key Results

Diploid Sorbus are outcrossing and self-incompatible (SI). Triploid taxa are pseudogamous apomicts and genetically invariable, but because they also display self-incompatibility, apomictic seed set requires pollen from other Sorbus taxa – a phenomenon which offers direct opportunities for hybridization. In contrast tetraploid taxa are pseudogamous but self-compatible, so do not have the same obligate requirement for intertaxon pollination.

Conclusions

The mating inter-relationships among Avon Gorge Sorbus taxa are complex and are the driving force for hybridization and ongoing genetic diversification. In particular, the presence of self-incompatibility in triploid pseudogamous apomicts imposes a requirement for interspecific cross-pollination, thereby facilitating continuing diversification and evolution through rare sexual hybridization events. This is the first report of naturally occurring pseudogamous apomictic SI plant populations, and we suggest that interspecific pollination, in combination with a relaxed endosperm balance requirement, is the most likely route to the persistence of these populations. We propose that Avon Gorge Sorbus represents a model system for studying the establishment and persistence of SI apomicts in natural populations.  相似文献   

13.

Background and Aims

Interspecific gene flow can occur in many combinations among species within the genus Quercus, but simultaneous hybridization among more than two species has been rarely analysed. The present study addresses the genetic structure and morphological variation in a triple hybrid zone formed by Q. hypoleucoides, Q. scytophylla and Q. sideroxyla in north-western Mexico.

Methods

A total of 247 trees from ten reference and 13 presumed intermediate populations were characterized using leaf shape variation and geometric morphometrics, and seven nuclear microsatellites as genetic markers. Discriminant function analysis was performed for leaf shape variation, and estimates of genetic diversity and structure, and individual Bayesian genetic assignments were obtained.

Key Results

Reference populations formed three completely distinct groups according to discriminant function analysis based on the morphological data, and showed low, but significant, genetic differentiation. Populations from the zone of contact contained individuals morphologically intermediate between pairs of species in different combinations, or even among the three species. The Bayesian admixture analysis found that three main genetic clusters best fitted the data, with good correspondence of reference populations of each species to one of the genetic clusters, but various degrees of admixture evidenced in populations from the contact area.

Conclusions

The three oak species have formed a complex hybrid zone that is geographically structured as a mosaic, and comprising a wide range of genotypes, including hybrids between different species pairs, backcrosses and probable triple hybrids.  相似文献   

14.

Background and Aims

Species delimitation can be problematic, and recently diverged taxa are sometimes viewed as the extremes of a species'' continuum in response to environmental conditions. Using population genetic approaches, this study assessed the relationship between two Casearia sylvestris (Salicaceae) varieties, which occur sympatrically and allopatrically in the landscape of south-east Brazil, where intermediate types are also found.

Methods

In total, 376 individuals from nine populations in four different ecosystems were sampled, and nine microsatellite markers were used to assess the relative effects of the ecosystems and varieties on the distribution of genetic diversity among populations of this species.

Key Results

As a by-product of this study, several PCR products with more than two alleles were observed. The possibility that extra bands represent non-specific amplification or PCR artefacts was discarded by sequencing a sample of these bands. We suggest that (partial) genome duplication in C. sylvestris most probably explains this phenomenon, which may be a key factor in the differentiation of the two taxa, as it was markedly more frequent in one of the varieties. AMOVA indicated that approx. 22 % of the total genetic diversity was found between the two varieties. Bayesian analysis identified varieties and ecosystems as evolutionary units, rather than the individual populations sampled.

Conclusions

The results are in agreement with field observations and support the recognition of two varieties, as well as documenting the occurrence of hybridization between them.  相似文献   

15.
Beatty GE  Provan J 《Annals of botany》2011,107(4):663-670

Background and Aims

Peripheral populations of plant species are often characterized by low levels of genetic diversity as a result of genetic drift, restricted gene flow, inbreeding and asexual reproduction. These effects can be exacerbated where range-edge populations are fragmented. The main aim of the present study was to assess the levels of genetic diversity in remnant populations of Hypopitys monotropa (syn. Monotropa hypopitys; yellow bird''s nest) at the edge of the species'' European range in Northern Ireland, since these remnant populations are small and highly fragmented.

Methods

Every plant found through surveys of 21 extant populations was genotyped for eight microsatellite loci to estimate levels and patterns of genetic diversity and clonality.

Key Results

Levels of genetic diversity were relatively high in the populations studied, and the incidence of clonal reproduction was generally low, with a mean of only 14·45 % of clonal individuals. Clones were small and highly spatially structured. Levels of inbreeding, however, were high.

Conclusions

The observed low levels of clonality suggest that the majority of genets in the populations of H. monotropa studied are fertile and that reproduction is predominantly sexual. As the species is highly self-compatible, it is likely that the high levels of inbreeding observed in the populations in the present study are the result of self-pollination, particularly given the small numbers of individuals in most of the patches. Given this extent of inbreeding, further genetic monitoring would be advisable to ensure that genetic diversity is maintained.  相似文献   

16.

Background and Aims

In perennial plants (especially post-fire resprouters), extant populations may reflect recruitment events in the distant past. This is true of hybrid zones formed by two Banksia species of swamps and woodlands in south-eastern Australia, Banksia robur and B. oblongifolia. Both resprout after fire but recruitment is dependent on periodic fires. Although plants of intermediate morphology have also been identified as hybrids using allozyme markers, the extent of ongoing hybridization is unknown. This study investigates whether both microsatellite markers and morphological measurements can be used to distinguish between the two species and their hybrids. A recent recruitment event and microsatellite markers allow the frequency of ongoing hybridization to be estimated, and also the effects of environmental variation on the morphology of plants and seedlings to be tested.

Methods

Variation at seven microsatellite loci was scored and seven leaf characteristics within putatively pure stands and mixed stands of both species were measured, revealing that the two species were genetically and morphologically distinct and that mixed stands also contained genetically and sometimes morphologically distinct hybrids. An opportunity created by wildfires was used to analyse the genetics and morphometrics of adults and seedlings from two hybrid zones.

Key Results

Approximately 9 % of adults and 21 % of seedlings were identified as genetic hybrids in both hybrid zones. Within these sites, the genotype of mature plants correlated well with morphology, except for some hybrid plants that had parental morphology. However, seedling morphology was highly variable and insufficient to describe the composition of the hybrid zone in this cohort. Greater phenotypic plasticity was evident among seedlings growing within the hybrid zones than seedlings growing in pots.

Conclusions

The hybrid zones are complex and the range of genotypes detected in seedlings reveals both continuing hybridization and introgression.  相似文献   

17.

Background and Aims

Rhododendron (Ericaceae) is a large woody genus in which hybridization is thought to play an important role in evolution and speciation, particularly in the Sino-Himalaya region where many interfertile species often occur sympatrically. Rhododendron agastum, a putative hybrid species, occurs in China, western Yunnan Province, in mixed populations with R. irroratum and R. delavayi.

Methods

Material of these taxa from two sites 400 km apart (ZhuJianYuan, ZJY and HuaDianBa, HDB) was examined using cpDNA and internal transcribed spacer (ITS) sequences, and amplified fragment length polymorphism (AFLP) loci, to test the possibility that R. agastum was in fact a hybrid between two of the other species. Chloroplast trnL-F and trnS-trnG sequences together distinguished R. irroratum, R. delavayi and some material of R. decorum, which is also considered a putative parent of R. agastum.

Key Results

All 14 R. agastum plants from the HDB site had the delavayi cpDNA haplotype, whereas at the ZJY site 17 R. agastum plants had this haplotype and four had the R. irroratum haplotype. R. irroratum and R. delavayi are distinguished by five unequivocal point mutations in their ITS sequences; every R. agastum accession had an additive pattern (double peaks) at each of these sites. Data from AFLP loci were acquired for between ten and 21 plants of each taxon from each site, and were analysed using a Bayesian approach implemented by the program NewHybrids. The program confirmed the identity of all accessions of R. delavayi, and all R. irroratum except one, which was probably a backcross. All R. agastum from HDB and 19 of 21 from ZJY were classified as F1 hybrids; the other two could not be assigned a class.

Conclusions

Rhododendron agastum represents populations of hybrids between R. irroratum and R. delavayi, which comprise mostly or only F1s, at the two sites examined. The sites differ in that at HDB there was no detected variation in cpDNA type or hybrid class, whereas at ZJY there was variation in both.  相似文献   

18.

Background

The genus Spartina exhibits extensive hybridization and includes classic examples of recent speciation by allopolyploidy. In the UK there are two hexaploid species, S. maritima and S. alterniflora, as well as the homoploid hybrid S. × townsendii (2n = 60) and a derived allododecaploid S. anglica (2n = 120, 122, 124); the latter two are considered to have originated in Hythe, southern England at the end of the 19th century.

Methods

Genomic in situ hybridization (GISH) and flow cytometry were used to characterize the genomic composition and distribution of these species and their ploidy levels at Eling Marchwood and Hythe, both near Southampton, southern England.

Key Results

GISH identified approx. 60 chromosomes each of S. maritima and S. alterniflora origin in S. anglica and 62 chromosomes from S. alterniflora and 30 chromosomes from S. maritima in a nonaploid individual from Eling Marchwood, UK. GISH and flow cytometry also revealed that most (94 %) individuals examined at Hythe were hexaploid (the remaining two individuals (6 %) were dodedcaploid; n = 34), whereas hexaploid (approx. 36 % of plants), nonaploid (approx. 27 %) and dodecaploid (approx. 36 %) individuals were found at Eling Marchwood (n = 22).

Conclusions

Nonaploid individuals indicate the potential for introgression between hexaploid and dodecaploid species, complicating the picture of polyploid-induced speciation within the genus. Despite the aggressive ecological habit of S. anglica, it has not out-competed S. × townsendii at Hythe (homoploid hybrids at a frequency of 94 %, n = 34), despite >100 years of coexistence. The success of GISH opens up the potential for future studies of polyploid-induced genome restructuring in this genus.  相似文献   

19.

Background and Aims

Four species of Pinus subsection Australes occur in the Caribbean Basin: P. caribaea, P. cubensis, P. maestrensis and P. occidentalis. This study analyses the phylogeography of these species to assess possible colonization events from Central America to the islands and subsequent population expansions during glacial periods driven by both drier climate and larger emerged land areas.

Methods

Allele size data were obtained for plastid microsatellites for 314 individuals from 24 populations, covering the distribution range of subsection Australes in the Caribbean Basin.

Key Results

In total, 113 plastid haplotypes were identified. The highest genetic diversity was found in populations of P. caribaea. Overall, Caribbean Basin populations fit the isolation by distance model. Significant phylogeographical structure was found (RST = 0·671 > permuted RST = 0·101; P < 0·0001). The haplotype network and a Bayesian analysis of population structure (BAPS) indicated different Central American origins for P. caribaea var. bahamensis and P. caribaea var. caribaea plastids, with Central America populations in northern and south-eastern groups. Sudden expansion times for BAPS clusters were close to three glacial maxima.

Conclusions

Central America contains ancestral plastid haplotypes. Population expansion has played a major role in the distribution of genetic diversity in P. caribaea var. hondurensis. Two colonization events gave rise to the P. caribaea var. bahamensis and P. caribaea var. caribaea lineages. Plastid variation in the eastern species (P. cubensis, P. maestrensis and P. occidentalis) evolved independently from that in P. caribaea var. caribaea. Incomplete lineage sorting between P. cubensis and P. maestrensis is apparent. Inferred expansion times for P. caribaea var. bahamensis and for the eastern lineages correspond to glacial maxima, whereas those for P. caribaea var. hondurensis correspond to the beginning of the temperature decrease that led to Marine Isotope Stage 8.  相似文献   

20.

Background and Aims

Hybridizing species such as oaks may provide a model to study the role of selection in speciation with gene flow. Discrete species'' identities and different adaptations are maintained among closely related oak species despite recurrent gene flow. This is probably due to ecologically mediated selection at a few key genes or genomic regions. Neutrality tests can be applied to identify so-called outlier loci, which demonstrate locus-specific signatures of divergent selection and are candidate genes for further study.

Methods

Thirty-six genic microsatellite markers, some with putative functions in flowering time and drought tolerance, and eight non-genic microsatellite markers were screened in two population pairs (n = 160) of the interfertile species Quercus rubra and Q. ellipsoidalis, which are characterized by contrasting adaptations to drought. Putative outliers were then tested in additional population pairs from two different geographic regions (n = 159) to support further their potential role in adaptive divergence.

Key Results

A marker located in the coding sequence of a putative CONSTANS-like (COL) gene was repeatedly identified as under strong divergent selection across all three geographically disjunct population pairs. COL genes are involved in the photoperiodic control of growth and development and are implicated in the regulation of flowering time.

Conclusions

The location of the polymorphism in the Quercus COL gene and given the potential role of COL genes in adaptive divergence and reproductive isolation makes this a promising candidate speciation gene. Further investigation of the phenological characteristics of both species and flowering time pathway genes is suggested in order to elucidate the importance of phenology genes for the maintenance of species integrity. Next-generation sequencing in multiple population pairs in combination with high-density genetic linkage maps could reveal the genome-wide distribution of outlier genes and their potential role in reproductive isolation between these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号