首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interferon-induced dynamin-like MxA protein has broad antiviral activity against many viruses, including orthomyxoviruses such as influenza A and Thogoto virus and bunyaviruses such as La Crosse virus. MxA consists of an N-terminal globular GTPase domain, a connecting bundle signaling element, and the C-terminal stalk that mediates oligomerization and antiviral specificity. We previously reported that the disordered loop L4 that protrudes from the compact stalk is a key determinant of antiviral specificity against influenza A and Thogoto virus. However, the role of individual amino acids for viral target recognition remained largely undefined. By mutational analyses, we identified two regions in the C-terminal part of L4 that contribute to an antiviral interface. Mutations in the proximal motif, at positions 561 and 562, abolished antiviral activity against orthomyxoviruses but not bunyaviruses. In contrast, mutations in the distal motif, around position 577, abolished antiviral activity against both viruses. These results indicate that at least two structural elements in L4 are responsible for antiviral activity and that the proximal motif determines specificity for orthomyxoviruses, whereas the distal sequence serves a conserved structural function.  相似文献   

2.
3.
MxA and MxB are interferon-induced proteins of human cells and are related to the murine protein Mx1, which confers selective resistance to influenza virus. In contrast to the nuclear murine protein Mx1, MxA and MxB are located in the cytoplasm, and their role in the interferon-induced antiviral state was unknown. In this report we show that transfected cell lines expressing MxA acquired a high degree of resistance to influenza A virus. Surprisingly, MxA also conferred resistance to vesicular stomatitis virus. Expression of MxA in transfected 3T3 cells had no effect on the multiplication of two picornaviruses, a togavirus, or herpes simplex virus type 1. Treatment of MxA-expressing cells with antibodies to mouse alpha-beta interferon did not abolish the resistance phenotype. The conclusion that resistance to influenza virus and vesicular stomatitis virus was due to the specific action of MxA is further supported by the observation that transfected 3T3 cell lines expressing the related MxB failed to acquire virus resistance.  相似文献   

4.
A Ponten  C Sick  M Weeber  O Haller    G Kochs 《Journal of virology》1997,71(4):2591-2599
Human MxA protein is an interferon-induced 76-kDa GTPase that exhibits antiviral activity against several RNA viruses. Wild-type MxA accumulates in the cytoplasm of cells. TMxA, a modified form of wild-type MxA carrying a foreign nuclear localization signal, accumulates in the cell nucleus. Here we show that MxA protein is translocated into the nucleus together with TMxA when both proteins are expressed simultaneously in the same cell, demonstrating that MxA molecules form tight complexes in living cells. To define domains important for MxA-MxA interaction and antiviral function in vivo, we expressed mutant forms of MxA together with wild-type MxA or TMxA in appropriate cells and analyzed subcellular localization and interfering effects. An MxA deletion mutant, MxA(359-572), formed heterooligomers with TMxA and was translocated to the nucleus, indicating that the region between amino acid positions 359 and 572 contains an interaction domain which is critical for oligomerization of MxA proteins. Mutant T103A with threonine at position 103 replaced by alanine had lost both GTPase and antiviral activities. T103A exhibited a dominant-interfering effect on the antiviral activity of wild-type MxA rendering MxA-expressing cells susceptible to infection with influenza A virus, Thogoto virus, and vesicular stomatitis virus. To determine which sequences are critical for the dominant-negative effect of T103A, we expressed truncated forms of T103A together with wild-type protein. A C-terminal deletion mutant lacking the last 90 amino acids had lost interfering capacity, indicating that an intact C terminus was required. Surprisingly, a truncated version of MxA representing only the C-terminal half of the molecule exerted also a dominant-negative effect on wild-type function, demonstrating that sequences in the C-terminal moiety of MxA are necessary and sufficient for interference. However, all MxA mutants formed hetero-oligomers with TMxA and were translocated to the nucleus, indicating that physical interaction alone is not sufficient for disturbing wild-type function. We propose that dominant-negative mutants directly influence wild-type activity within hetero-oligomers or else compete with wild-type MxA for a cellular or viral target.  相似文献   

5.
Interferon-mediated host responses are of great importance for controlling influenza A virus infections. It is well established that the interferon-induced Mx proteins possess powerful antiviral activities toward most influenza viruses. Here we analyzed a range of influenza A virus strains for their sensitivities to murine Mx1 and human MxA proteins and found remarkable differences. Virus strains of avian origin were highly sensitive to Mx1, whereas strains of human origin showed much weaker responses. Artificial reassortments of the viral components in a minireplicon system identified the viral nucleoprotein as the main target structure of Mx1. Interestingly, the recently reconstructed 1918 H1N1 "Spanish flu" virus was much less sensitive than the highly pathogenic avian H5N1 strain A/Vietnam/1203/04 when tested in a minireplicon system. Importantly, the human 1918 virus-based minireplicon system was almost insensitive to inhibition by human MxA, whereas the avian influenza A virus H5N1-derived system was well controlled by MxA. These findings suggest that Mx proteins provide a formidable hurdle that hinders influenza A viruses of avian origin from crossing the species barrier to humans. They further imply that the observed insensitivity of the 1918 virus-based replicon to the antiviral activity of human MxA is a hitherto unrecognized characteristic of the "Spanish flu" virus that may contribute to the high virulence of this unusual pandemic strain.  相似文献   

6.
The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP) of pandemic strains A/Brevig Mission/1/1918 (1918) and A/Hamburg/4/2009 (pH1N1) that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1)/04 (H5N1) resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.  相似文献   

7.
Host restriction factors play a crucial role in preventing trans-species transmission of viral pathogens. In mammals, the interferon-induced Mx GTPases are powerful antiviral proteins restricting orthomyxoviruses. Hence, the human MxA GTPase may function as an efficient barrier against zoonotic introduction of influenza A viruses into the human population. Successful viruses are likely to acquire adaptive mutations allowing them to evade MxA restriction. We compared the 2009 pandemic influenza A virus [strain A/Hamburg/4/09 (pH1N1)] with a highly pathogenic avian H5N1 isolate [strain A/Thailand/1(KAN-1)/04] for their relative sensitivities to human MxA and murine Mx1. The H5N1 virus was highly sensitive to both Mx GTPases, whereas the pandemic H1N1 virus was almost insensitive. Substitutions of the viral polymerase subunits or the nucleoprotein (NP) in a polymerase reconstitution assay demonstrated that NP was the main determinant of Mx sensitivity. The NP of H5N1 conferred Mx sensitivity to the pandemic H1N1 polymerase, whereas the NP of pandemic H1N1 rendered the H5N1 polymerase insensitive. Reassortant viruses which expressed the NP of H5N1 in a pH1N1 genetic background and vice versa were generated. Congenic Mx1-positive mice survived intranasal infection with these reassortants if the challenge virus contained the avian NP. In contrast, they succumbed to infection if the NP of pH1N1 origin was present. These findings clearly indicate that the origin of NP determines Mx sensitivity and that human influenza viruses acquired adaptive mutations to evade MxA restriction. This also explains our previous observations that human and avian influenza A viruses differ in their sensitivities to Mx.  相似文献   

8.
9.
Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members of the Bunyaviridae family, but the effect of MxA against CCHFV has not previously been studied. Here, we report that human MxA has antiviral activity against CCHFV. The yield of progeny virus in cells constitutively expressing MxA was reduced up to 1,000-fold compared with control cells, and accumulation of viral genomes was blocked. Confocal microscopy revealed that MxA colocalizes with the nucleocapsid protein (NP) of CCHFV in the perinuclear regions of infected cells. Furthermore, we found that MxA interacted with NP by using a coimmunoprecipitation assay. We also found that an amino acid substitution (E645R) within the C-terminal domain of MxA resulted in a loss of MxA antiviral activity and, concomitantly, in the capacity to interact with CCHFV NP. These results suggest that MxA, by interacting with a component of the nucleocapsid, prevents replication of CCHFV viral RNA and thereby inhibits the production of new infectious virus particles.  相似文献   

10.
Mx proteins form a small family of interferon (IFN)-induced GTPases with potent antiviral activity against various negative-strand RNA viruses. To examine the antiviral spectrum of human MxA in homologous cells, we stably transfected HEp-2 cells with a plasmid directing the expression of MxA cDNA. HEp-2 cells are permissive for many viruses and are unable to express endogenous MxA in response to IFN. Experimental infection with various RNA and DNA viruses revealed that MxA-expressing HEp-2 cells were protected not only against influenza virus and vesicular stomatitis virus (VSV) but also against Semliki Forest virus (SFV), a togavirus with a single-stranded RNA genome of positive polarity. In MxA-transfected cells, viral yields were reduced up to 1,700-fold, and the degree of inhibition correlated well with the expression level of MxA. Furthermore, expression of MxA prevented the accumulation of 49S RNA and 26S RNA, indicating that SFV was inhibited early in its replication cycle. Very similar results were obtained with MxA-transfected cells of the human monocytic cell line U937. The results demonstrate that the antiviral spectrum of MxA is not restricted to negative-strand RNA viruses but also includes SFV, which contains an RNA genome of positive polarity. To test whether MxA protein exerts its inhibitory activity against SFV in the absence of viral structural proteins, we took advantage of a recombinant vector based on the SFV replicon. The vector contains only the coding sequence for the viral nonstructural proteins and the bacterial LacZ gene, which was cloned in place of the viral structural genes. Upon transfection of vector-derived recombinant RNA, expression of the β-galactosidase reporter gene was strongly reduced in the presence of MxA. This finding indicates that viral components other than the structural proteins are the target of MxA action.  相似文献   

11.
Thogoto and Dhori viruses are tick-borne orthomyxoviruses infecting humans and livestock in Africa, Asia, and Europe. Here, we show that human MxA protein is an efficient inhibitor of Thogoto virus but is inactive against Dhori virus. When expressed in the cytoplasm of stably transfected cell lines, MxA protein interfered with the accumulation of Thogoto viral RNA and proteins. Likewise, MxA(R645), a mutant MxA protein known to be active against influenza virus but inactive against vesicular stomatitis virus, was equally efficient in blocking Thogoto virus growth. Hence, a common antiviral mechanism that is distinct from the antiviral action against vesicular stomatitis virus may operate against both influenza virus and Thogoto virus. When moved to the nucleus with the help of a foreign nuclear transport signal, MxA(R645) remained active against Thogoto virus, indicating that a nuclear step of virus replication was inhibited. In contrast, Dhori virus was not affected by wild-type or mutant MxA protein, indicating substantial differences between these two tick-transmitted orthomyxoviruses. Human MxB protein had no antiviral activity against either virus.  相似文献   

12.
The interferon-induced human MxA protein belongs to the class of dynamin-like, large guanosine-5'-triphosphatases that are involved in intracellular vesicle trafficking and organelle homeostasis. MxA shares many properties with the other members of this protein superfamily, including the propensity to self-assemble and to associate with lipid membranes. However, MxA is unique in that it has antiviral activity and inhibits the replication of several RNA viruses. Here, we determined the role of membranes for the antiviral function of MxA using LaCrosse-bunyavirus (LACV). We show that MxA does not affect trafficking and sorting of viral glycoproteins but binds and mislocates the viral nucleocapsid (N) protein into membrane-associated, large perinuclear complexes. We further demonstrate that MxA localizes to a subcompartment of the smooth endoplasmic reticulum where the viral N protein accumulates. In infected MxA-expressing cells, oligomeric MxA/N complexes are formed in close association with COP-I-positive vesicular-tubular membranes. Our results suggest that this membrane compartment is the preferred place where MxA and N interact, leading to efficient sequestration and missorting of an essential viral component.  相似文献   

13.

Background

Chicken Mx belongs to the Mx family of interferon-induced dynamin-like GTPases, which in some species possess potent antiviral properties. Conflicting data exist for the antiviral capability of chicken Mx. Reports of anti-influenza activity of alleles encoding an Asn631 polymorphism have not been supported by subsequent studies. The normal cytoplasmic localisation of chicken Mx may influence its antiviral capacity. Here we report further studies to determine the antiviral potential of chicken Mx against Newcastle disease virus (NDV), an economically important cytoplasmic RNA virus of chickens, and Thogoto virus, an orthomyxovirus known to be exquisitely sensitive to the cytoplasmic MxA protein from humans. We also report the consequences of re-locating chicken Mx to the nucleus.

Methodology/Principal Findings

Chicken Mx was tested in virus infection assays using NDV. Neither the Asn631 nor Ser631 Mx alleles (when transfected into 293T cells) showed inhibition of virus-directed gene expression when the cells were subsequently infected with NDV. Human MxA however did show significant inhibition of NDV-directed gene expression. Chicken Mx failed to inhibit a Thogoto virus (THOV) minireplicon system in which the cytoplasmic human MxA protein showed potent and specific inhibition. Relocalisation of chicken Mx to the nucleus was achieved by inserting the Simian Virus 40 large T antigen nuclear localisation sequence (SV40 NLS) at the N-terminus of chicken Mx. Nuclear re-localised chicken Mx did not inhibit influenza (A/PR/8/34) gene expression during virus infection in cell culture or influenza polymerase activity in A/PR/8/34 or A/Turkey/50-92/91 minireplicon systems.

Conclusions/Significance

The chicken Mx protein (Asn631) lacks inhibitory effects against THOV and NDV, and is unable to suppress influenza replication when artificially re-localised to the cell nucleus. Thus, the natural cytoplasmic localisation of the chicken Mx protein does not account for its lack of antiviral activity.  相似文献   

14.
15.
Interferon-induced Mx proteins in antiviral host defense   总被引:7,自引:0,他引:7  
Haller O  Staeheli P  Kochs G 《Biochimie》2007,89(6-7):812-818
  相似文献   

16.
Human MxA protein is a member of the interferon-induced Mx protein family and an important component of the innate host defense against RNA viruses. The Mx family belongs to a superfamily of large GTPases that also includes the dynamins and the interferon-regulated guanylate-binding proteins. A common feature of these large GTPases is their ability to form high molecular weight oligomers. Here we determined the capacity of MxA to self-assemble into homo-oligomers in vitro. We show that recombinant MxA protein assembles into long filamentous structures with a diameter of about 20 nm at physiological salt concentration as demonstrated by sedimentation assays and electron microscopy. In the presence of guanosine nucleotides the filaments rearranged into rings and more compact helical arrays. Our data indicate that binding and hydrolysis of GTP induce conformational changes in MxA that may be essential for viral target recognition and antiviral activity.  相似文献   

17.
18.
MxA is a GTPase that accumulates to high levels in the cytoplasm of interferon-treated human cells. Expression of MxA cDNA confers to transfected cell lines a high degree of resistance against several RNA viruses, including influenza, measles, vesicular stomatitis, and Thogoto viruses. We have now generated transgenic mice that express MxA cDNA in the brain and other organs under the control of a constitutive promoter. Embryonic fibroblasts derived from the transgenic mice were nonpermissive for Thogoto virus and showed reduced susceptibility for influenza A and vesicular stomatitis viruses. The transgenic animals survived challenges with high doses of Thogoto virus by the intracerebral or intraperitoneal route. Furthermore, the transgenic mice were more resistant than their nontransgenic littermates to intracerebral infections with influenza A and vesicular stomatitis viruses. These results demonstrate that MxA is a powerful antiviral agent in vivo, indicating that it may protect humans from the deleterious effects of infections with certain viral pathogens.  相似文献   

19.
With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号