首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Plant Biochemistry and Biotechnology - Powdery mildew is a serious fungal disease of wheat caused by Blumeria graminis f. sp. tritici. Chromosome 5U of Aegilops triuncialis carrying...  相似文献   

2.
Genetic regulation of grain hardness and protein content in intervarietal substitution lines for chromosomes of homeologous group 5 was examined. Common wheat cultivar Saratovskaya 29 with high bread-backing properties served as the recipient. Donors of chromosomes 5A and 5D were 18 cultivars with variable traits examined, including high-protein cultivars (Atlas 66 and Diamant 2), and soft-grain cultivars (Ul’yanovka and Chinese Spring). Analysis of substitution lines pointed to a substantial effect of chromosome 5D on the regulation of both traits. It was demonstrated that as a result of intervarietal substitution for chromosome 5D from donor cultivars Ul’yanovka and Chinese Spring, the endosperm softness was increased compared to the recipient cultivar Saratovskaya 29. Substitution lines Saratovskaya 29/Atlas 66 5D and Saratovskaya 29/Diamant 2 5D were characterized by high grain protein content, as well as by high endosperm hardness. In addition, the line Saratovskaya 29/Novosibirskaya 67 5D, characterized by grain hardness higher than in Saratovskaya 29, was isolated. In the lines with intervarietal substitution of chromosome 5A, grain protein content was found to be lower than in recipient cultivar Saratovskaya 29.  相似文献   

3.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

4.
Summary The present study describes a cytological stable alien chromosome translocation in tetraploid durum wheat. By crossing the hexaploid 1BL/1RS wheat-rye translocation line Veery to the tetraploid durum wheat cultivar Cando it was possible to select a 28 chromosomic strain homozygous for the 1BL/1RS translocation. The disease resistance potential of the short arm of rye chromosome 1R, which has been widely introduced in many hexaploid bread wheat cultivars could be now also used for the improvement of durum wheat.  相似文献   

5.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   

6.
Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 21 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.This paper is dedicated to the memory of the late Ernest R. SearsCooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper No. 3986  相似文献   

7.
Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.  相似文献   

8.
 The cereal cyst nematode (Heterodera avenae) is an important root parasite of common wheat. A high level of resistance was transferred to wheat from Aegilops triuncialis (TR lines) using the cross [(T. turgidum×Ae. triuncialisT. aestivum]. Low fertility (3–5 viable kernels per plant) was observed during the process but the surviving hybrid plants were highly vigorous. To obtain stable resistant lines further crosses to T. aestivum were performed. The resistance in TR lines seems to be transferred from the C genome of Ae. triuncialis (genomes CCUU). Ae. triuncialis was highly resistant to the two Spanish populations of H. avenae tested, as well as to four French races and two Swedish populations. The histological analysis showed a hypersensitive reaction in the roots of a resistant TR line inoculated with the Ha71 pathotype of H. avenae, whereas well-formed syncytia were observed in the roots of the susceptible control. Resistance to the H. avenae Ha71 pathotype seemed to be inherited as determined by a single dominant factor in the crosses between resistant TR lines and susceptible cultivars. Received: 11 November 1997 / Accepted: 9 December 1997  相似文献   

9.
A subcellular fraction enriched in aleurone grains isolatedin glycerol from aleurone layers of wheat endosperm specificallyand reversibly bound GA1-(3H). Specific binding of GA1 to otherfractions including spherosomes, nuclei, mitochondria, and plasmamembranes was negligible. The Kd of binding to aleurone grainswas 1.5 µM and the number of specific binding sites 0.45pmoles per mg protein. The presence of Ca++ ions was absolutelyrequired for binding. Abscisic acid which inhibits giberellinaction in vivo prevented specific GA1-binding in vitro. GA1-bindingto aleurone grains is important to the primary action of thehormone which may involve mobilization of reserves from thealeurone grain-spherosome complex for utilization in membranebiogenesis. 1 Present address: Section of Cytology, Yale University Schoolof Medicine, New Haven, CT 06510, U.S.A. 3 Present address: Laboratoire de Biologie V?g?tale, Ecole NormaleSup?rieure, 24 rue Lhomond, 75231 Paris, France. (Received March 28, 1977; )  相似文献   

10.
Grain protein content (GPC) in durum wheat (Triticum turgidum var. durum) is negatively correlated with grain yield. To evaluate possible genetic interrelationships between GPC and grain yield per spike, thousand-kernel weight and kernel number per spike, quantitative trait loci (QTL) for GPC were mapped using GPC-adjusted data in a covariance analysis on yield components. Phenotypic data were evaluated in a segregating population of 120 recombinant inbred lines derived from crossing the elite cultivars Svevo and Ciccio. The material was tested at five environments in southern Italy. QTL were determined by composite interval mapping based on the Svevo?×?Ciccio linkage map described in Gadaleta et al. (2009) and integrated with DArT markers. The close relationship between GPC and yield components was reflected in the negative correlation between the traits and in the reduction of variance when GPC values were adjusted to yield components. Ten independent genomic regions involved in the expression of GPC were detected, six of which were associated with QTL for one or more grain yield components. QTL alleles with increased GPC effects were associated with QTL alleles with decreased effects on one or more yield component traits, or vice versa (i.e. the allelic effects were in opposite direction). Four QTL for GPC showed always significant effects, and these QTL should represent genes that influence GPC independently from variation in the yield components. Such genes are of special interest in wheat breeding since they would allow an increase in GPC without a concomitant decrease in grain yield.  相似文献   

11.
 This study was undertaken with a view to tag gene(s) controlling grain protein content (GPC) using molecular markers in bread wheat. For this purpose, the genotype PH132 with high protein content (13.5%) was crossed with genotype WL711 with significantly lower protein content (9.7%), and 100 RILs were derived. These RILs showed normal distribution for protein content. The parental genotypes were analysed with 232 STMS primer pairs for detection of polymorphism. Of these, 167 primer pairs gave scorable amplification products, and 57 detected polymorphism between the parents. Using each of these 57 primer pairs, we carried out bulked segregant analysis on RILs representing the two extremes of the distribution. One primer pair for the locus wmc41 showed association with protein content. This was further confirmed through selective genotyping. The co-segregation data on the molecular marker (wmc41) and protein content on 100 RILs was analysed by means of a single-marker linear regression approach. Significant regression suggested linkage between wmc41 and a QTL (designated as QGpc.ccsu-2D.) for protein content. The results showed that this marker-linked QTL accounted for 18.73% of the variation for protein content between the parents. The marker has been located on chromosome arm 2DL using nulli-tetrasomic lines and two ditelocentric stocks for chromosome 2D. Received: 25 August 1998 / Accepted: 5 January 1999  相似文献   

12.

Background

The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat.

Results

Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70–80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors.

Conclusion

A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
  相似文献   

13.
Chromosome 5A of wheat is known to carry a number of genes affecting adaptability and productivity. To localize quantitative trait loci (QTLs) controlling grain yield and its components, an RFLP map was constructed from 118 single-chromosome recombinant lines derived from the F1 between Chinese Spring (Cappelle-Desprez 5A) and Chinese Spring (Triticum spelta 5A). The map was combined with the field-trial data scored over 3 years. A total of five regions in chromosome 5A contributed effects on yield traits. Increases in grain yield, 50-grain weight and spikelet number/ear were determined by complementary QTL alleles from both parents. The effects associated with the vernalization requirement gene Vrn-A1 or a closely linked QTL were significant only in the favorable growing season where the later-flowering vrn-A1 allele from Cappelle-Desprez 5A produced a higher tiller number/plant and spikelet number/ear. The effects of the ear morphology gene q or closely linked QTL(s) were detected for grain yield and ear grain weight. Three other QTLs with minor effects were dispersed along chromosome 5A. These QTLs had large interactions with years due to changes in the magnitude of the significant response. The alleles from T. spelta, however, conferred a higher yield performance. Received: 18 August 1999 / Accepted: 25 March 2000  相似文献   

14.
Unlike most documented plant-insect interactions, Hessian fly-resistance [Mayetiola destructor (Say)] in wheat (Triticum aestivum L.) is initiated by a gene-for-gene recognition event in which plants carrying a specific R gene recognize salivary effectors encoded by a corresponding larval avirulence gene. However, dual infestation resulting from oviposition by virulent insects from 5 d before to 3 d after oviposition by avirulent insects on the same host plant, lead to systemic induced susceptibility, obviation of resistance, and ultimately the survival of both virulent and genetically avirulent progeny to adulthood. Simultaneous oviposition allowed greater survival of avirulent progeny than ovipositions separated by larger intervals. Because of the induction of plant resistance, hatch of avirulent larvae before virulent was more detrimental to rate of development than hatch of virulent before avirulent larvae. Obviation of resistance was not localized to the leaf being attacked by the virulent larvae, but also functioned across spatial distance into younger leaves. This research suggests that virulent Hessian fly larvae directly suppress the defense response of wheat, thus providing a refuge for avirulent genotypes, preserving diversity in field populations and increasing durability of deployed resistance genes.  相似文献   

15.
Luo MC  Yang ZL  Kota RS  Dvorák J 《Genetics》2000,154(3):1301-1308
Recombination of chromosomes 3A(m) and 5A(m) of Triticum monococcum with closely homeologous chromosomes 3A and 5A of T. aestivum was compared with recombination across corresponding homologous chromosome pairs. Differentiation between the homeologues impacted recombination in the proximal regions of the long arms the most and in the distal regions of the long arms the least. It is concluded that this variation principally reflects allocation of multiple crossovers across an arm and positive crossover interference across chromosome arms. Recombination rates between homeologous chromosomes 5A(m) and 5A differed in the opposite sexes.  相似文献   

16.
Microsatellites were isolated from a Aegilops tauschii (the D-genome donor of bread wheat) library enriched for various motifs. Primers generated from the flanking region of the microsatellites were used successfully to amplify the corresponding loci in the D genome of bread wheat. Additional amplification sometimes also occurred from the A and B genomes. The majority of the microsatellites contained (GA)(n) and (GT)(n) motifs. GA and GT repeats appeared to be both more abundant in this library and more polymorphic than other types of repeats. The allele number for both types of dinucleotide repeats fitted a Poisson distribution. Deviance analysis showed that GA and GT were more polymorphic than other motifs in bread wheat. Within each motif type (di-, tri- and tetra-nucleotide repeats), repeat number has no influence on polymorphism. The microsatellites were mapped using the Triticum aestivum Courtot x Chinese Spring mapping population. A total of 100 markers was developed on this intraspecific map, mainly on the D genome. For polyploid species, isolation of microsatellites from an ancestral diploid donor seems to be an efficient way of developing markers for the corresponding genome in the polyploid plant.  相似文献   

17.
Stripe rust, caused by Puccinia striiformis West. f.sp. tritici, is one of the most damaging diseases of wheat worldwide. Forty genes for stripe rust resistance have been catalogued so far, but the majority of them are not effective against emerging pathotypes. Triticum monococcum and T. boeoticum have excellent levels of resistance to rusts, but so far, no stripe rust resistance gene has been identified or transferred from these species. A set of 121 RILs generated from a cross involving T. monococcum (acc. pau14087) and T. boeoticum (acc. pau5088) was screened for 3 years against a mixture of pathotypes under field conditions. The parental accessions were susceptible to all the prevalent pathotypes at the seedling stage, but resistant at the adult plant stage. Genetic analysis of the RIL population revealed the presence of two genes for stripe rust resistance, with one gene each being contributed by each of the parental lines. A linkage map with 169 SSR and RFLP loci generated from a set of 93 RILs was used for mapping these resistance genes. Based on phenotypic data for 3 years and the pooled data, two QTLs, one each in T. monococcum acc. pau14087 and T. boeoticum acc. pau5088, were detected for resistance in the RIL population. The QTL in T. monococcum mapped on chromosome 2A in a 3.6 cM interval between Xwmc407 and Xwmc170, whereas the QTL from T. boeoticum mapped on 5A in 8.9 cM interval between Xbarc151 and Xcfd12 and these were designated as QYrtm.pau-2A and QYrtb.pau-5A, respectively. Based on field data for 3 years, their R 2 values were 14 and 24%, respectively. T. monococcum acc. pau14087 and three resistant RILs were crossed to hexaploid wheat cvs WL711 and PBW343, using T. durum as a bridging species with the objective of transferring these genes into hexaploid wheat. The B genome of T. durum suppressed resistance in the F1 plants, but with subsequent backcrossing one resistance gene could be transferred from one of the RILs to the hexaploid wheat background. This gene was derived from T. boeoticum acc. pau5088 as indicated by co-introgression of T. boeoticum sequences linked to stripe rust resistance QTL, QYrtb.pau-5A. Homozygous resistant progenies with 40–42 chromosomes have been identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The growth habit, ear emergence time, and frost tolerance of wheat/rye substitution lines have been studied in cultivars Rang and Mironovskaya Krupnozernaya whose chromosome 5A is substituted with chromosome 5R of Onkhoyskaya rye. Hybrid analysis has demonstrated that the spring habit of the recipient cultivars Rang and Mironovskaya Krupnozernaya is controlled by dominant gene Vrn-A1 located in chromosome 5A. Onokhoyskaya rye has a dominant gene for the spring habit (Sp1) located in chromosome 5R. It has been found that the resultant 5R(5A) alien-substitution lines have a winter type of development and ears do not emerge during summer in plants sown in spring. The change in growth habit has been shown to be related to the absence of the rye Spl gene expression in the substitution lines. The winter hardiness of winter 5R(5A) alien-substitution lines has been studied under the environmental conditions of Novosibirsk. Testing the lines in the first winter demonstrated that their winter survival is 20-27%. The possible presence of the frost resistance gene homeoallelic to the known genes Fr1 and Fr2 of the common wheat located on chromosomes 5A and 5D, respectively, is discussed.  相似文献   

19.
Summary Rye carries a gene(s) on the long arm of chromosome 5 which confers the ability to tolerate soils too copper-deficient for wheat. Because many South Australian soils are low in copper, copper deficiency in wheat is common. To overcome this problem, wheats were bred having the rye chromosome arm (5RL) attached to a wheat chromosome. The presence of the rye 5RL chromosome segment in four different wheat cultivars increased grain yield on copper-deficient soils by more than 100% on average. Effects in vegetative yields were also significant at stem extension. Copper concentrations were on average little higher in plant tissues of 5R lines than in the controls but copper uptake was greater, in proportion to yield. Possible mechanisms of the copper efficiency factor are discussed.  相似文献   

20.
Summary A gene encoding the high-molecular-weight (HMW) subunit of glutenin 1Ax1 was isolated from bread wheat cv Hope. Comparison of the deduced amino acid sequence with that previously reported for an allelic subunit, 1Ax2*, showed only minor differences, which were consistent with both subunits being associated with good bread-making quality. Quantitative analyses of total protein extracts from 22 cultivars of bread wheat showed that the presence of either subunit 1Ax1 or 1Ax2*, when compared with a null allele, resulted in an increase in the proportion of HMW subunit protein from ca. 8 to 10% of the total. It is suggested that this quantitative increase in HMW subunit protein may account for the association of 1Ax subunits with good quality.EMBL Data Library. Accession number: X61009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号