首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male fruit flies learn to avoid interspecific courtship   总被引:5,自引:1,他引:4  
Dukas  Reuven 《Behavioral ecology》2004,15(4):695-698
Experimental data suggest, and theoretical models typicallyassume, that males of many fruit flies (Drosophila spp) areat least partially indiscriminate while searching for mates,and that it is mostly the females who exert selective mate choice,which can lead to incipient speciation. Evidence on learningby male D. melanogaster in the context of courtship, however,raises the possibility that the initially indiscriminate malesbecome more selective with experience. I tested this possibilityby comparing the courtship behavior of male D. melanogasterexperienced at courting females of the closely related species,D. simulans, and inexperienced males. I found that comparedwith the inexperienced males, the males experienced with courtingD. simulans females showed significantly lower courtship towardfemale D. simulans. Both male treatments, however, showed virtuallyidentical courtship durations with female D. melanogaster. Theseresults indicate that male fruit flies adaptively refine theircourtship behavior with experience and suggest that the malescontribute more to assortative mating and incipient speciationthan is commonly assumed.  相似文献   

2.
Two sympatric, distantly related Drosophila species, D. affinis and D. melanogaster, interact sexually in the laboratory and in the field. When mature males from one species are tested with females or sexually attractive males from the other species, the mature males perform courtship that, in most cases, is indistinguishable from the courtship that attractive conspecific flies elicit. Moreover, some of the D. affinis females that elicit courtship from D. melanogaster males copulate with them.  相似文献   

3.
Evolutionary innovation can allow a species access to a new ecological niche, potentially reducing competition with closely related species. While the vast majority of Drosophila flies feed on rotting fruit and other decaying matter, and are harmless to human activity, Drosophila suzukii, which has a morphologically modified ovipositor, is capable of colonizing live fruit that is still in the process of ripening, causing massive agricultural damage. Here, we conducted the first comparative analysis of this species and its close relatives, analysing both ovipositor structure and fruit susceptibility. We found that the ovipositor of the species most closely related to D. suzukii, Drosophila subpulchrella, has a similar number of enlarged, evolutionarily derived bristles, but a notably different overall shape. Like D. suzukii, D. subpulchrella flies are capable of puncturing the skin of raspberries and cherries, but we found no evidence that they could penetrate the thicker skin of two varieties of grapes. More distantly related species, one of which has previously been mistaken for D. suzukii, have blunt ovipositors with small bristles. While they did not penetrate fruit skin in any of the assays, they readily colonized fruit interiors where the skin was broken. Our results suggest that considering evolutionary context may be beneficial to the management of invasive species.  相似文献   

4.
Temperature-dependent induction of ecdysteroid deficiency in the ecdysoneless mutant ecd1 adult Drosophilamelanogaster results in altered courtship behavior in males. Ecdysteroid deficiency brings about significantly elevated male-male courtship behavior including song production resembling that directed toward females. Supplementation with dietary 20-hydroxyecdysone reduces male-male attraction, but does not change motor activity, courtship patterns or attraction to females. These observations support the hypothesis that reduced levels of ecdysteroids increase the probability that male fruit flies will display courtship behaviors to male stimuli.  相似文献   

5.
Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii compared with closely related species D. subpulchrella and D. biarmipes as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Second, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes, and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii’s preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Last, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii’s ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.  相似文献   

6.
In this study, it is shown that the males of several picture-winged Drosophila subgroup species produced high-frequency clicking sounds when courting females. At the beginning of the courtship, the males may semaphore or vibrate their wings with a large amplitude, producing no audible sounds. After these ‘preliminary’ wing vibrations the males set their wings backwards in a normal resting position and vibrate them with a small amplitude, producing loud clicking sounds (up to 15000 cps), which differ from all Drosophila sounds described so far in both their spectral and their temporal structure. When producing these sounds the males always touch the abdomen of the female with their front legs, which might help the females receive the sounds as vibrational signals.  相似文献   

7.
Sexual selection has led to the evolution of extraordinary and elaborate male courtship behaviors across taxa, including mammals and birds, as well as some species of flies. Drosophila persimilis flies perform complex courtship behaviors found in most Drosophila species, which consist of visual, air-borne, gustatory and olfactory cues. In addition, Drosophila persimilis courting males also perform an elaborate postural display that is not found in most other Drosophila species. This postural display includes an upwards contortion of their abdomen, specialized movements of the head and forelegs, raising both wings into a “wing-posture” and, most remarkably, the males proffer the female a regurgitated droplet. Here, we use high-resolution imaging, laser vibrometry and air-borne acoustic recordings to analyse this postural display to ask which signals may promote copulation. Surprisingly, we find that no air-borne signals are generated during the display. We show, however, that the abdomen tremulates to generate substrate-borne vibratory signals, which correlate with the female’s immobility before she feeds onto the droplet and accepts copulation.  相似文献   

8.
《Insect Biochemistry》1991,21(4):413-419
An ovulation stimulating substance (OSS) was isolated from males of the fruit fly Drosophila suzukii, and purified to a homogeneous state by a 5-step purification procedure: extraction with 80% methanol, chloroform wash, heat treatment, ion-exchange chromatography, and reverse phase high performance liquid chromatography. Approximately 100-fold purification was obtained thereby yielding 39 μg of OSS from 1000 males for an overall yield of 34%. The OSS is a single peptide consisting of at least 35 amino acid residues and having a molecular weight of 3990. The purified OSS not only initiated ovulation in unmated females but also suppressed their receptivity towards males. The peptide of D. suzukii was found to be effective in the females of D. melanogaster, a species that belong to a different subgroup, but was less effective in a more closely related species, D. pulchrella.  相似文献   

9.

Introduction

Female spiders are fine-tuned to detect and quickly respond to prey vibrations, presenting a challenge to courting males who must attract a female’s attention but not be mistaken for prey. This is likely particularly important at the onset of courtship when a male enters a female’s web. In web-dwelling spiders, little is known about how males solve this conundrum, or about their courtship signals. Here we used laser Doppler vibrometry to study the vibrations produced by males and prey (house flies and crickets) on tangle webs of the western black widow Latrodectus hesperus and on sheet webs of the hobo spider Tegenaria agrestis. We recorded the vibrations at the location typically occupied by a hunting female spider. We compared the vibrations produced by males and prey in terms of their waveform, dominant frequency, frequency bandwidth, amplitude and duration. We also played back recorded male and prey vibrations through the webs of female L. hesperus to determine the vibratory parameters that trigger a predatory response in females.

Results

We found overlap in waveform between male and prey vibrations in both L. hesperus and T. agrestis. In both species, male vibrations were continuous, of long duration (on average 6.35 s for T. agrestis and 9.31 s for L. hesperus), and lacked complex temporal patterning such as repeated motifs or syllables. Prey vibrations were shorter (1.38 - 2.59 s), sporadic and often percussive. Based on the parameters measured, courtship signals of male L. hesperus differed more markedly from prey cues than did those of T. agrestis. Courtship vibrations of L. hesperus males differed from prey vibrations in terms of dominant frequency, amplitude and duration. Vibrations of T. agrestis males differed from prey in terms of duration only. During a playback experiment, L. hesperus females did not respond aggressively to low-amplitude vibrations irrespective of whether the playback recording was from a prey or a male.

Conclusions

Unlike courtship signals of other spider species, the courtship signals of L. hesperus and T. agrestis males do not have complex temporal patterning. The low-amplitude ‘whispers’ of L. hesperus males at the onset of courtship are less likely to trigger a predatory response in females than the high-amplitude vibrations of struggling prey.  相似文献   

10.
D. birchii and D. serrata, two endemic Australian Drosophila species, have a copulatory courtship. The males of these species begin to court the female after mounting her and often go on with the courtship after the copulation is over. In the present paper we have described behavioral interactions between the male and the female and analyzed acoustic signals produced by the flies during courtship. Species differences were more pronounced in female than in male behavior. Variation within the species was obvious in the relative proportions of time the flies spent in different behaviors. Even though courtship took place nearly solely during copulation, some remains of precopulatory courtship were observed in both species. It is suggested that copulatory courtship exhibited by D. birchii and D. serrata flies is a derived rather than a primitive character.  相似文献   

11.
Many animal species communicate using chemical signals. In Drosophila, cuticular hydrocarbons (CHCs) are involved in species and sexual identification, and have long been thought to act as stimulatory pheromones as well. However, a previous study reported that D. melanogaster males were more attracted to females that were lacking CHCs. This surprising result is consistent with several evolutionary hypotheses but is at odds with other work demonstrating that female CHCs are attractive to males. Here, we investigated natural variation in male preferences for female pheromones using transgenic flies that cannot produce CHCs. By perfuming females with CHCs and performing mate choice tests, we found that some male genotypes prefer females with pheromones, some have no apparent preference, and at least one male genotype prefers females without pheromones. This variation provides an excellent opportunity to further investigate the mechanistic causes and evolutionary implications of divergent pheromone preferences in D. melanogaster males.  相似文献   

12.
《Animal behaviour》1987,35(2):468-476
Wild mating male D. melanogaster and D. pseudoobscura were larger than randomly sampled males. That this was due to size and not a confounding effect of age was confirmed by release experiments with D. melanogaster of standard age; larger males were at a mating advantage with virgin and inseminated females. In both species larger males delivered more courtship and in D. pseudoobscura they won more aggressive encounters. These results on Drosophila in the field confirm and extend those previously obtained in the laboratory.  相似文献   

13.
Oviposition preference for spherical substrates has been reported in some insects but not in Drosophila species until the recent finding that Drosophila suzukii preferentially lays eggs on spherical surfaces with a smaller radius, whereas D. melanogaster does not. This finding raised two questions: (i) Was this trait specifically acquired in D. suzukii or lost in D. melanogaster? (ii) In the latter case, is it due to the long-term laboratory culture using oviposition substrates with flat surfaces? To answer these questions, we examined the oviposition preference of three Drosophila species using the stocks recently established from wild individuals. As with D. suzukii, D. simulans and D. takahashii showed significant preference for spherical surfaces with a smaller radius, suggesting that this trait is shared by multiple Drosophila species. In contrast, D. melanogaster did not show any preference for either smaller or larger radii, showing that the preference already has been lost in the natural population of D. melanogaster. It may be possible that the loss of oviposition preference for spherical surfaces is involved in the evolutionary process of D. melanogaster becoming a human commensal.  相似文献   

14.
邴孝利  陆益佳 《微生物学报》2019,59(10):1880-1888
斑翅果蝇是一种在全球范围内造成危害的重要水果害虫,其主要分布于亚、美、欧三大洲。斑翅果蝇的产卵器可以刺破水果表皮,将卵产在未完全成熟的水果中,卵孵化为幼虫后,幼虫取食水果,直接降低产量,从而对水果产业造成损失。近年以来,越来越多的研究表明昆虫微生物对宿主昆虫影响很大。例如昆虫微生物可以调控寄主昆虫的生长发育、个体适应性及生殖等。昆虫与其共生微生物间的关系成为昆虫生物学研究的热点内容。本文综述了近些年关于斑翅果蝇微生物多样性的研究,探讨了微生物菌群及内共生菌Wolbachia对斑翅果蝇生长发育、行为、生殖、抗病毒等的影响,以便为寻找控制斑翅果蝇种群的策略提供参考依据。  相似文献   

15.
The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila–associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.  相似文献   

16.
Drosophila melanogaster are found in sympatry with Drosophila simulans, and matings between the species produce nonfertile hybrid offspring at low frequency. Evolutionary theory predicts that females choose mates, so males should alter their behaviour in response to female cues. We show that D. melanogaster males quickly decrease courtship towards D. simulans females. Courtship levels are reduced within 5 min of exposure to a heterospecific female, and overall courtship is significantly lower than courtship towards conspecific females. To understand changes at the molecular level during mate choice, we performed microarray analysis on D. melanogaster males that courted heterospecific D. simulans females and found nine genes have altered expression compared with controls. In contrast, males that court conspecific females alter expression of at least 35 loci. The changes elicited by conspecific courtship likely modulate nervous system function to reinforce positive conspecific signals and dampen the response to heterospecific signals.  相似文献   

17.
Study of the fruit fly, Drosophila melanogaster, has yielded important insights into the underlying molecular mechanisms of learning and memory. Courtship conditioning is a well-established behavioral assay used to study Drosophila learning and memory. Here, we describe the development of software to analyze courtship suppression assay data that correctly identifies normal or abnormal learning and memory traits of individual flies. Development of this automated analysis software will significantly enhance our ability to use this assay in large-scale genetic screens and disease modeling. The software increases the consistency, objectivity, and types of data generated.  相似文献   

18.
Ganaspis individuals parasitizing Drosophila suzukii (Matsumura), a pest of fruit crops, were examined for host use and molecular and morphological differences from those attacking D. lutescens Okada and some other Drosophila species that breed on fermenting fruits. Wild cherry fruits were collected in the suburbs of Tokyo, and drosophilid pupae obtained from these fruits were examined for parasitism. Drosophila suzukii was the only drosophilid species infesting fresh wild cherry fruits, and Ganaspis individuals were the major parasitoids attacking D. suzukii in wild cherry fruits. In parasitism experiments, these Ganaspis individuals parasitized D. suzukii larvae in fresh cherry fruits, but did not parasitize those in Drosophila medium. In addition, they did not parasitize larvae of some other fruit-feeding Drosophila species even when these occurred in fresh cherry fruit. These Ganaspis individuals parasitizing D. suzukii were different from those parasitizing D. lutescens and some other drosophilids in nucleotide sequences of the COI gene, as well as in ITS1 and ITS2. They were also different in forewing and antenna morphology, although they showed some overlap in morphological traits. They are tentatively assigned as the suzukii- and lutescens-associated types of G. xanthopoda Ashmead. In the present field survey, Leptopilina japonica Novkovi? & Kimura and some Asobara species were also observed to attack D. suzukii larvae in wild cherry fruit.  相似文献   

19.
Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases1. We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials2-4. The rapid iterative negative geotaxis (RING) assay5 has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously using large number of animals, with the high-throughput approach making it more amenable for screening experiments.  相似文献   

20.
The courtship songs of Drosophila are produced by the male's wing vibration and consist of a series of pulses, with an inter-pulse interval (IPI) of 34 ms for D. melanogaster and 48 ms for D. simulans. The IPI's are not constant in length during courtship, but oscillate sinusoidally with 55-s cycles in the former species and 35-s cycles in the latter. We have stimulated D. melanogaster females with artificially generated courtship songs, and have observed that they mate fastest when the song incorporates a 55-s oscillation superimposed on a 34-ms IPI. D. simulans females, on the other hand, mate fastest with a 48-ms IPI and a 35-s oscillation period. Consequently these newly-discovered song cycles produce significant mating enhancement in these species, with the females showing a preference for songs which carry both the species-specific IPI and the species-specific IPI rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号