首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Ameloblastin (AMBN) is the second most abundant extracellular matrix protein produced by the epithelial cells called ameloblasts and is found mainly in forming dental enamel. Inactivation of its expression by gene knockout results in absence of the enamel layer and its replacement by a thin layer of dysplastic mineralized matrix. The objective of this study was to further characterize the enamel organ and mineralized matrix produced in the AMBN knockout mouse. However, in the course of our study, we unexpectedly found that this mouse is in fact a mutant that does not express the full-length protein but that produces a truncated form of AMBN. Mandibles from wild type and mutant mice were processed for morphological analyses and immunolabeling. Microdissected enamel organs and associated matrix were also prepared for molecular and biochemical analyses. In incisors from mutants, ameloblasts lost their polarized organization and the enamel organ detached from the tooth surface and became disorganized. A thin layer of dysplastic mineralized material was deposited onto dentin, and mineralized masses were present within the enamel organ. These mineralized materials generated lower backscattered electron contrast than normal enamel, and immunocytochemistry with colloidal gold revealed the presence of amelogenin, bone sialoprotein and osteopontin. In addition, the height of the alveolar bone was reduced, and the junctional epithelium lost its integrity. Immunochemical and RT–PCR results revealed that the altered enamel organ in the mutant mice produced a shorter AMBN protein that is translated from truncated RNA missing exons 5 and 6. These results indicate that absence of full-length protein and/or expression of an incomplete protein have direct/indirect effects beyond structuring of mineral during enamel formation, and highlight potential functional regions on the AMBN molecule.  相似文献   

2.
AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C-terminal half and that these domains were critical for AMBN binding to dental epithelial cells. Overexpression of full-length AMBN protein inhibited proliferation of human ameloblastoma AM-1 cells, but overexpression of heparin binding domain-deficient AMBN protein had no inhibitory effect. In full-length AMBN-overexpressing AM-1 cells, the expression of Msx2, which is involved in the dental epithelial progenitor phenotype, was decreased, whereas the expression of cell proliferation inhibitors p21 and p27 was increased. We also found that the expression of enamelin, a marker of differentiated ameloblasts, was induced, suggesting that AMBN promotes odontogenic tumor differentiation. Thus, our results suggest that AMBN promotes cell binding through the heparin binding sites and plays an important role in preventing odontogenic tumor development by suppressing cell proliferation and maintaining differentiation phenotype through Msx2, p21, and p27.The extracellular matrix provides structural support for cells and regulates cell proliferation, migration, differentiation, and apoptosis for tissue development and homeostasis (1). The extracellular matrix also plays a crucial role in pathological processes and diseases, such as wound healing, tumorigenesis, and cancer development (2, 3). AMBN (ameloblastin), also known as amelin and sheathlin, is a tooth-specific extracellular matrix and the most abundant non-amelogenin enamel matrix protein (46). AMBN is expressed primarily by ameloblasts, which are differentiated from the oral ectoderm and form a polarized single cell layer underlying the enamel matrix. In a previous study, we created Ambn-null mice and demonstrated that AMBN is required for cell attachment and polarization and for maintaining the differentiation state of ameloblasts and is essential for enamel formation (3). Overexpression of Ambn in transgenic mice causes abnormal enamel crystallite formation and enamel rod morphology (7). These results suggest that enamel formation and rod morphology are influenced by temporal and spatial expressions of AMBN and imply that the AMBN gene locus may be involved in the etiology of a number of cases of undiagnosed hereditary amelogenesis imperfecta (8). Further, it was reported that recombinant AMBN enhances pulpal wound healing and reparative dentine formation following pulpotomy procedures, suggesting that it functions as a signal molecule in epithelial-mesenchymal interactions (9).We previously reported that about 20% of Ambn-null mice developed an odontogenic tumor of dental epithelium origin in the buccal vestibule of the maxilla (3). The epithelial cells of odontogenic tumors express enamel matrix proteins, including AMEL (amelogenin), ENAM (enamelin), and TUFT (tuftelin), but not AMBN, indicating that AMBN deficiency is probably the primary cause of tumorigenesis seen in those mice. An ameloblastoma appearing in the jaw is the most frequently encountered odontogenic tumor and is characterized by benign but locally invasive behavior with a high rate of recurrence. Since abnormal proliferation and growth of ameloblastoma cells easily destroys surrounding bony tissues, wide excision is required to treat this disorder. It is also reported that ameloblastomas rarely metastasize to other parts of the body, such as the lungs and regional lymph nodes (10, 11). Associations of AMBN mutations were reported in ameloblastomas, adenomatoid odontogenic tumors, and squamous odontogenic tumors (12). These results suggest that AMBN regulates odontogenic tumor formation.In the present study, we investigated the mechanism of AMBN in dental epithelial cell adhesion and ameloblastoma proliferation. We found that AMBN has heparin binding domains, which are essential for AMBN binding to dental epithelial cells. We demonstrate that overexpression of recombinant AMBN inhibits proliferation of human ameloblastoma cells. This inhibition requires the heparin binding sites of AMBN and is accompanied by dysregulation of Msx2, p21, and p27. These results suggest that AMBN suppresses ameloblastoma cell proliferation by regulating cellular signaling through the heparin binding domains.  相似文献   

3.
Tooth root formation begins after the completion of crown morphogenesis. At the end edge of the tooth crown, inner and outer enamel epithelia form Hertwig’s epithelial root sheath (HERS). HERS extends along with dental follicular tissue for root formation. Ameloblastin (AMBN) is an enamel matrix protein secreted by ameloblasts and HERS derived cells. A number of enamel proteins are eliminated in root formation, except for AMBN. AMBN may be related to tooth root formation; however, its role in this process remains unclear. In this study, we found AMBN in the basal portion of HERS of lower first molar in mice, but not at the tip. We designed and synthesized small interfering RNA (siRNA) targeting AMBN based on the mouse sequence. When AMBN siRNA was injected into a prospective mandibular first molar of postnatal day 10 mice, the root became shorter 10 days later. Furthermore, HERS in these mice revealed a multilayered appearance and 5-bromo-2′-deoxyuridine (BrdU) positive cells increased in the outer layers. In vitro experiments, when cells were compared with and without transiently expressing AMBN mRNA, expression of growth suppressor genes such as p21Cip1 and p27Kip1 was enhanced without AMBN and BrdU incorporation increased. Thus, AMBN may regulate differentiation state of HERS derived cells. Moreover, our results suggest that the expression of AMBN in HERS functions as a trigger for normal root formation.  相似文献   

4.
5.
The epithelially-derived ameloblasts secrete two main categories of extracellular matrix proteins, amelogenins (AMEL) and nonamelogenins. These proteins assume differential distributions in the forming enamel layer and thereby regulate deposition and structuring of the mineral phase. The objective of this study was to elucidate whether their distribution results from distinctive physicochemical behaviors or differences in intracellular routing. Dual-immunogold labeling was used to visualize the presence of AMEL and ameloblastin (AMBN), the major nonamelogenin, and quantify the proportion of secretory granules containing one or both of these proteins in ameloblasts during the phase of appositional growth of the enamel layer in continuously-erupting rat incisors. Some rats were treated with brefeldin A (BFA) to generate a synchronized cohort of newly-formed secretory granules. The results show that nearly 70% of granules contain both AMEL and AMBN, 13% label only for AMBN and 1% only for AMEL. These proportions reach 98% (AMEL+AMBN) and 2% (AMBN only) following BFA treatment. The observation that AMEL is almost always packaged with AMBN suggests a functional association between these two proteins. The subpopulation of granules containing only AMBN could be responsible for augmenting its local concentration along secretory surfaces against which hydroxyapatite crystals actively elongate.  相似文献   

6.
We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.  相似文献   

7.
Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.  相似文献   

8.
9.
During enamel formation, the organic enamel protein matrix interacts with calcium phosphate minerals to form elongated, parallel, and bundled enamel apatite crystals of extraordinary hardness and biomechanical resilience. The enamel protein matrix consists of unique enamel proteins such as amelogenin, ameloblastin, and enamelin, which are secreted by highly specialized cells called ameloblasts. The ameloblasts also facilitate calcium and phosphate ion transport toward the enamel layer. Within ameloblasts, enamel proteins are transported as a polygonal matrix with 5 nm subunits in secretory vesicles. Upon expulsion from the ameloblasts, the enamel protein matrix is re-organized into 20 nm subunit compartments. Enamel matrix subunit compartment assembly and expansion coincide with C-terminal cleavage by the MMP20 enamel protease and N-terminal amelogenin self-assembly. Upon enamel crystal precipitation, the enamel protein phase is reconfigured to surround the elongating enamel crystals and facilitate their elongation in C-axis direction. At this stage of development, and upon further amelogenin cleavage, central and polyproline-rich fragments of the amelogenin molecule associate with the growing mineral crystals through a process termed “shedding”, while hexagonal apatite crystals fuse in longitudinal direction. Enamel protein sheath-coated enamel “dahlite” crystals continue to elongate until a dense bundle of parallel apatite crystals is formed, while the enamel matrix is continuously degraded by proteolytic enzymes. Together, these insights portrait enamel mineral nucleation and growth as a complex and dynamic set of interactions between enamel proteins and mineral ions that facilitate regularly seeded apatite growth and parallel enamel crystal elongation.  相似文献   

10.
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrPC) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.  相似文献   

11.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

12.
The SLC26/SulP (solute carrier/sulfate transporter) proteins are a superfamily of anion transporters conserved from bacteria to man, of which four have been identified in human diseases. Proteins within the SLC26/SulP family exhibit a wide variety of functions, transporting anions from halides to carboxylic acids. The proteins comprise a transmembrane domain containing between 10-12 transmembrane helices followed a by C-terminal cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domain. These proteins are expected to undergo conformational changes during the transport cycle; however, structural information for this family remains sparse, particularly for the full-length proteins. To address this issue, we conducted an expression and detergent screen on bacterial Slc26 proteins. The screen identified a Yersinia enterocolitica Slc26A protein as the ideal candidate for further structural studies as it can be purified to homogeneity. Partial proteolysis, co-purification, and analytical size exclusion chromatography demonstrate that the protein purifies as stable oligomers. Using small angle neutron scattering combined with contrast variation, we have determined the first low resolution structure of a bacterial Slc26 protein without spectral contribution from the detergent. The structure confirms that the protein forms a dimer stabilized via its transmembrane core; the cytoplasmic STAS domain projects away from the transmembrane domain and is not involved in dimerization. Supported by additional biochemical data, the structure suggests that large movements of the STAS domain underlie the conformational changes that occur during transport.  相似文献   

13.
Precursor proteins that are imported from the cytosol into the matrix of mitochondria carry positively charged amphipathic presequences and cross the inner membrane with the help of vital components of the TIM23 complex. It is currently unclear which subunits of the TIM23 complex recognize and directly bind to presequences. Here we analyzed the binding of presequence peptides to purified components of the TIM23 complex. The interaction of three different presequences with purified soluble domains of yeast Tim50 (Tim50IMS), Tim23 (Tim23IMS), and full-length Tim44 was examined. Using chemical cross-linking and surface plasmon resonance we demonstrate, for the first time, the ability of purified Tim50IMS and Tim44 to interact directly with the yeast Hsp60 presequence. We also analyzed their interaction with presequences derived from precursors of yeast mitochondrial 70-kDa heat shock protein (mHsp70) and of bovine cytochrome P450SCC. Moreover, we characterized the nature of the interactions and determined their KDs. On the basis of our results, we suggest a mechanism of translocation where stronger interactions of the presequences on the trans side of the channel support the import of precursor proteins through TIM23 into the matrix.  相似文献   

14.
Vertebrate enamel formation is a unique synthesis of the function of highly specialized enamel proteins and their effect on the growth and organization of apatite crystals. Among tetrapods, the physical structure of enamel is highly conserved, while there is a greater variety of enameloid tooth coverings in fish. In the present study, we postulated that in enamel microstructures of similar organization, the principle components of the enamel protein matrix would have to be highly conserved. In order to identify the enamel proteins that might be most highly conserved and thus potentially most essential to the process of mammalian enamel formation, we used immunoscreening with enamel protein antibodies as a means to assay for degrees of homology to mammalian enamel proteins. Enamel preparations from mouse, gecko, frog, lungfish, and shark were screened with mammalian enamel protein antibodies, including amelogenin, enamelin, tuftelin, MMP20, and EMSP1. Our results demonstrated that amelogenin was the most highly conserved enamel protein associated with the enamel organ, enamelin featured a distinct presence in shark enameloid but was also present in the enamel organ of other species, while the other enamel proteins, tuftelin, MMP20, and EMSP1, were detected in both in the enamel organ and in other tissues of all species investigated. We thus conclude that the investigated enamel proteins, amelogenin, enamelin, tuftelin, MMP20, and EMSP1, were highly conserved in a variety of vertebrate species. We speculate that there might be a unique correlation between amelogenin-rich tetrapod and lungfish enamel with long and parallel crystals and enamelin-rich basal vertebrate enameloid with diverse patterns of crystal organization.  相似文献   

15.
Enamel formation is a powerful model for the study of biomineralization. A key feature common to all biomineralizing systems is their dependency upon the biosynthesis of an extracellular organic matrix that is competent to direct the formation of the subsequent mineral phase. The major organic component of forming mouse enamel is the 180-amino-acid amelogenin protein (M180), whose ability to undergo self-assembly is believed to contribute to biomineralization of vertebrate enamel. Two recently defined domains (A and B) within amelogenin appear essential for this self-assembly. The significance of these two domains has been demonstrated previously by the yeast two-hybrid system, atomic force microscopy, and dynamic light scattering. Transgenic animals were used to test the hypothesis that the self-assembly domains identified with in vitro model systems also operate in vivo. Transgenic animals bearing either a domain-A-deleted or domain-B-deleted amelogenin transgene expressed the altered amelogenin exclusively in ameloblasts. This altered amelogenin participates in the formation an organic enamel extracellular matrix and, in turn, this matrix is defective in its ability to direct enamel mineralization. At the nanoscale level, the forming matrix adjacent to the secretory face of the ameloblast shows alteration in the size of the amelogenin nanospheres for either transgenic animal line. At the mesoscale level of enamel structural hierarchy, 6-week-old enamel exhibits defects in enamel rod organization due to perturbed organization of the precursor organic matrix. These studies reflect the critical dependency of amelogenin self-assembly in forming a competent enamel organic matrix and that alterations to the matrix are reflected as defects in the structural organization of enamel.  相似文献   

16.
Amelogenin proteins, the principal components of the developing dental enamel matrix, self-assemble to form nanosphere structures that are believed to function as structural components directly involved in the matrix mediated enamel biomineralization. The self-assembly behavior of a recombinant murine amelogenin (rM179) was investigated by atomic force microscopy (AFM) for further understanding the roles of amelogenin proteins in dental enamel biomineralization. Recombinant rM179 amelogenin was dissolved in a pH 7.4 Tris-HCl buffer at concentrations ranging from 12.5 to 300 microg/ml. The solutions were adsorbed on mica, fixed with Karnovsky fixative and rinsed thoroughly with water for atomic force microscopy (AFM). At low concentrations (12.5-50 microg/ml), nanospheres with diameters varying from 7 to 53 nm were identified while at concentrations ranging between 100-300 microg/ml the size distribution was significantly narrowed to be steadily between 10 and 25 nm in diameter. These nanospheres were observed to be the basic building blocks of both engineered rM179 gels and of the developing enamel extracellular matrix. The stable 15-20-nm nanosphere structures generated in the presence of high concentrations of amelogenins were postulated to be of great importance in facilitating the highly organized ultrastructural microenvironment required for the formation of initial enamel apatite crystallites.  相似文献   

17.
Secretins are a family of large bacterial outer membrane protein complexes mediating the transport of complex structures, such as type IV pili, DNA and filamentous phage, or various proteins, such as extracellular enzymes and pathogenicity determinants. PilQ of the thermophilic bacterium Thermus thermophilus HB27 is a member of the secretin family required for natural transformation. Here we report the isolation, structural, and functional analyses of a unique PilQ from T. thermophilus. Native PAGE, gel filtration chromatography, and electrophoretic mobility shift analyses indicated that PilQ forms a macromolecular homopolymeric complex that binds dsDNA. Electron microscopy showed that the PilQ complex is 15 nm wide and 34 nm long and consists of an extraordinary stable "cone" and "cup" structure and five ring structures with a large central channel. Moreover, the electron microscopic images together with secondary structure analyses combined with structural data of type II protein secretion system and type III protein secretion system secretins suggest that the individual rings are formed by conserved domains of alternating α-helices and β-sheets. The unprecedented length of the PilQ complex correlated well with the distance between the inner and outer membrane of T. thermophilus. Indeed, PilQ was found immunologically in both membranes, indicating that the PilQ complex spans the entire cell periphery of T. thermophilus. This is consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus mediating DNA transport across the outer membrane and periplasmic space in a single-step process.  相似文献   

18.
Amelogenins: assembly, processing and control of crystal morphology.   总被引:5,自引:0,他引:5  
The remarkable properties of enamel crystals and their arrangements in an extraordinary micro-architecture are clear indications that the processes of crystal nucleation and growth in the extracellular matrix are highly controlled. The major extracellular events involved in enamel formation are: (a) delineation of space by the secretory ameloblasts and the dentino-enamel junction; (b) self-assembly of amelogenin proteins to form the supramolecular structural framework; (c) transportation of calcium and phosphate ions by the ameloblasts resulting in a supersaturated solution; (d) nucleation of apatite crystallites; and (e) elongated growth of the crystallites. Finally, during the 'maturation' step, rapid growth and thickening of the crystallites take place, which is concomitant with progressive degradation and eventual removal of the enamel extracellular matrix components (mainly amelogenins). This latter stage during which physical hardening of enamel occurs is perhaps unique to dental enamel. We have focused our in vitro studies on three major extracellular events: matrix assembly, matrix processing and control of crystal growth. This paper summarizes current knowledge on the assembly, processing and effect on crystal morphology by amelogenin proteins. The correlation between these three events and putative functional roles for amelogenin protein are discussed.  相似文献   

19.
Accumulating evidence indicates that G protein-coupled receptors can assemble as dimers/oligomers but the role of this phenomenon in G protein coupling and signaling is not yet clear. We have used the purified leukotriene B4 receptor BLT2 as a model to investigate the capacity of receptor monomers and dimers to activate the adenylyl cyclase inhibitory Gi2 protein. For this, we overexpressed the recombinant receptor as inclusion bodies in the Escherichia coli prokaryotic system, using a human α5 integrin as a fusion partner. This strategy allowed the BLT2 as well as several other G protein-coupled receptors from different families to be produced and purified in large amounts. The BLT2 receptor was then successfully refolded to its native state, as measured by high-affinity LTB4 binding in the presence of the purified G protein Gαi2. The receptor dimer, in which the two protomers displayed a well defined parallel orientation as assessed by fluorescence resonance energy transfer, was then separated from the monomer. Using two methods of receptor-catalyzed guanosine 5′-3-O-(thio)triphosphate binding assay, we clearly demonstrated that monomeric BLT2 stimulates the purified Gαi2β1γ2 protein more efficiently than the dimer. These data suggest that assembly of two BLT2 protomers into a dimer results in the reduced ability to signal.  相似文献   

20.
In our previous studies, we have demonstrated that the Src-coupled α1 Na/K-ATPase works as a receptor for cardiotonic steroids, such as ouabain, to regulate cellular protein kinase cascades. Here, we explore further the structural determinants of the interaction between the α1 Na/K-ATPase and Src and demonstrate that the Src-coupled α1 Na/K-ATPase allows the cell to decode the transmembrane transport activity of the Na/K-ATPase to turn on/off protein kinases. The α1 Na/K-ATPase undergoes E1/E2 conformational transition during an ion pumping cycle. The amount of E1 and E2 Na/K-ATPase is regulated by extracellular K(+) and intracellular Na(+). Using purified enzyme preparations we find that the E1 Na/K-ATPase can bind both the Src SH2 and kinase domains simultaneously and keep Src in an inactive state. Conversely, the E1 to E2 transition releases the kinase domain and activates the associated Src. Moreover, we demonstrate that changes in E1/E2 Na/K-ATPase by either Na(+) or K(+) are capable of regulating Src and Src effectors in live cells. Together, the data suggest that the Src-coupled α1 Na/K-ATPase may act as a Na(+)/K(+) receptor, allowing salt to regulate cellular function through Src and Src effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号