首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Human milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk.

Methods

Samples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed.

Results

The bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively.

Conclusion

UV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk.  相似文献   

3.

Background

Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein.

Methodology/Principal Findings

The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts.

Conclusions/Significance

Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.  相似文献   

4.

Background

N-myristoylation is a crucial covalent modification of numerous eukaryotic and viral proteins that is catalyzed by N-myristoyltransferase (NMT). Prokaryotes are lacking endogeneous NMT activity. Recombinant production of N-myristoylated proteins in E. coli cells can be achieved by coexpression of heterologous NMT with the target protein. In the past, dual plasmid systems were used for this purpose.

Methodology/Principal Findings

Here we describe a single vector system for efficient coexpression of substrate and enzyme suitable for production of co- or posttranslationally modified proteins. The approach was validated using the HIV-1 Nef protein as an example. A simple and efficient protocol for production of highly pure and completely N-myristoylated Nef is presented. The yield is about 20 mg myristoylated Nef per liter growth medium.

Conclusions/Significance

The single vector strategy allows diverse modifications of target proteins recombinantly coexpressed in E. coli with heterologous enzymes. The method is generally applicable and provides large amounts of quantitatively processed target protein that are sufficient for comprehensive biophysical and structural studies.  相似文献   

5.

Purpose

Recent reports suggest that the hypoglycaemic effects of the triterpenes involve inhibition of glucose transport in the small intestine. Therefore, the effects of Syzygium spp-derived triterpenes oleanolic acid (OA) and maslinic acid (MA) were evaluated on carbohydrate hydrolyzing enzymes in STZ-induced diabetic rats and consequences on postprandial hyperglycaemia after carbohydrate loading.

Methods

We determined using Western blot analysis the expressions of α-amylase and α-glucosidase and glucose transporters SGLT1 and GLUT2 in the small intestine intestines isolated from diabetic rats treated with OA/MA for 5 weeks. In vitro assays were used to assess the inhibitory activities of OA and MA against α-amylase, α-glucosidase and sucrase.

Results

OA and MA ameliorated postprandial hyperglycemia in carbohydrate loaded diabetic rats as indicated by the significantly small glucose area under the curve (AUC) in treated diabetic animals compared with that in untreated diabetic rats. Western blotting showed that OA and MA treatment not only down-regulated the increase of SGLT1 and GLUT2 expressions in the small intestine of STZ-induced diabetic rats, but also inhibited small intestine α-amylase, sucrase and α-glucosidase activity. IC50 values of OA against α-amylase (3.60 ± 0.18 mmol/L), α-glucosidase (12.40 ± 0.11 mmol/L) and sucrase (11.50 ± 0.13 mmol/L) did not significantly differ from those of OA and acarbose.

Conclusions

The results of suggest that OA and MA may be used as potential supplements for treating postprandial hyperglycemia.

Novelty of the Work

The present observations indicate that besides improving glucose homeostasis in diabetes, OA and MA suppress postprandial hyperglycaemia mediated in part via inhibition of carbohydrate hydrolysis and reduction of glucose transporters in the gastrointestinal tract. Inhibition of α-glucosidase and α-amylase can significantly decrease the postprandial hyperglycaemia after a mixed carbohydrate diet and therefore can be an important strategy in the management of postprandial blood glucose levels in NIDDM patients.  相似文献   

6.

Background

Severe asthma is associated with T helper (TH) 2 and 17 cell activation, airway neutrophilia and phosphoinositide-3-kinase (PI3K) activation. Asthma exacerbations are commonly caused by rhinovirus (RV) and also associated with PI3K-driven inflammation. Anthraquinone derivatives have been shown to reduce PI3K-mediated AKT phosphorylation in-vitro.

Objective

To determine the anti-inflammatory potential of anthraquinones in-vivo.

Methods

BALB/c mice were sensitized and challenged with crude house dust mite extract to induce allergic airways disease and treated with mitoxantrone and a novel non-cytotoxic anthraquinone derivative. Allergic mice were also infected with RV1B to induce an exacerbation.

Results

Anthraquinone treatment reduced AKT phosphorylation, hypoxia-inducible factor-1α and vascular endothelial growth factor expression, and ameliorated allergen- and RV-induced airways hyprereactivity, neutrophilic and eosinophilic inflammation, cytokine/chemokine expression, mucus hypersecretion, and expression of TH2 proteins in the airways. Anthraquinones also boosted type 1 interferon responses and limited RV replication in the lung.

Conclusion

Non-cytotoxic anthraquinone derivatives may be of therapeutic benefit for the treatment of severe and RV-induced asthma by blocking pro-inflammatory pathways regulated by PI3K/AKT.  相似文献   

7.

Context

Stress response induced by surgery is proposed to play an important role in the pathogenesis of postoperative cognitive dysfunction.

Objective

To investigate the association between postoperative serum cortisol level and occurrence of cognitive dysfunction early after coronary artery bypass graft surgery.

Design

Prospective cohort study.

Setting

Two teaching hospitals.

Patients

One hundred and sixth-six adult patients who were referred to elective coronary artery bypass graft surgery from March 2008 to December 2009.

Intervention

None.

Main Outcome Measures

Neuropsychological tests were completed one day before and seven days after surgery. Cognitive dysfunction was defined using the same definition as used in the ISPOCD1-study. Blood samples were obtained in the first postoperative morning for measurement of serum cortisol concentration. Multivariate Logistic regression analyses were performed to assess the relationship between serum cortisol level and occurrence of postoperative cognitive dysfunction.

Results

Cognitive dysfunction occurred in 39.8% (66 of 166) of patients seven days after surgery. Multivariate Logistic regression analysis showed that high serum cortisol level was significantly associated with the occurrence of postoperative cognitive dysfunction (odds ratio [OR] 2.603, 95% confidence interval [CI] 1.371-4.944, P = 0.003). Other independent predictors of early postoperative cognitive dysfunction included high preoperative New York Heart Association functional class (OR 0.402, 95% CI 0.207-0.782, P = 0.007), poor preoperative Grooved Pegboard test score of nondominant hand (OR 1.022, 95% CI 1.003-1.040, P = 0.020), use of penehyclidine as premedication (OR 2.565, 95% CI 1.109-5.933, P = 0.028), and occurrence of complications within seven days after surgery (OR 2.677, 95% CI 1.201-5.963, P = 0.016).

Conclusions

High serum cortisol level in the first postoperative morning was associated with increased risk of cognitive dysfunction seven days after coronary artery bypass graft surgery.  相似文献   

8.
9.

Background

Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a Gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested.

Methodology/Principal Findings

The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system.

Conclusions/Significance

Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.  相似文献   

10.

Aims

The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD), regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting).

Methods and Results

Male C57BL/6 (WT) and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase) and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36) and Fatty acid transport protein (FATP) 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar) α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK) phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters — CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle.

Conclusion

Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.  相似文献   

11.

Background

There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.

Methods

The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets.

Results

Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization.

Conclusions

The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.  相似文献   

12.

Background

Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4.

Experimental approach

Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4′-diisothiocyanostilbene-2,2′-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4.

Results

In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization.

Conclusions

Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.  相似文献   

13.

Objectives

To establish whether blueberry (Vaccinium ashei) and mulberry (Morus australis Poir) juice, anthocyanin rich fruit juice, may help counteract obesity.

Design

And Methods: Four-week-old C57BL/6 mice were fed a high-fat diet (HFD) with or without blueberry and mulberry juice for 12 weeks. Body weight, serum and hepatic lipids, liver and adipose tissues morphology, insulin and leptin were assessed.

Results

Mice fed HFD exhibited increased body weight, insulin resistance, serum and hepatic lipids. In comparison, blueberry and mulberry juice inhibited body weight gain, decreased the serum cholesterol, reduced the resistance to insulin, attenuated lipid accumulation and decreased the leptin secretin.

Conclusion

These results indicate that blueberry and mulberry juice may help counteract obesity.  相似文献   

14.

Background

Breast cancer stem cells (BCSCs) have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL), BrCA-MZ-01.

Methods

ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+) and mature cancer (ALDH−) cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE). Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS.

Results

2-D DIGE identified poly(ADP-ribose) polymerase 1 (PARP1) as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor.

Conclusion

An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.  相似文献   

15.

Objective

To examine the time-of-day and Ramadan fasting (RF) effects on serum apolipoprotein-AI (Apo-AI) and B (Apo-B), lipoprotein particles-a (Lp-a), high-sensitive C-reactive-protein (hs-CRP), and homocysteine (Hcy) during the Yo-Yo intermittent recovery test (YYIRT).

Design

Performance and biochemical measures were completed at two times-of-day (07:00 and 17:00 h), 1-week before RF (BR), the second week of RF (SWR), and the fourth week of RF (ER).

Setting

For each session, subjects performed the YYIRT, and blood samples were taken before and 3-min after the test for biochemical measures.

Participants

Fifteen soccer players.

Main Outcome Measures

Total distance during the YYIRT, core temperature, body composition, dietary intakes, lipid (HDL-C, LDL-C, Apo-AI, B and Lp-a) and inflammatory (hs-CRP and Hcy) profiles.

Results

Performances during the YYIRT were higher in the evening than the morning BR (P < 0.05), but this fluctuation was not observed during RF. Moreover, LDL-C, ApoB, and Lp-a were stable throughout the daytime BR. However, during RF, they decreased at 17:00 h (P < 0.05). Likewise, HDL-C and Apo-AI increased after the exercise and were higher at 17:00 h BR (P < 0.001). Moreover, these parameters increased during RF (P < 0.01). Furthermore, Hcy and hs-CRP increased during the exercise (P < 0.01) with higher evening levels BR. During ER, the diurnal pattern of Hcy was inversed (P < 0.001).

Conclusions

This study concluded that caloric restriction induced by RF seems to ameliorate lipid and inflammatory markers of cardiovascular health during intermittent exercise performed in the evening.  相似文献   

16.

Background

Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial.

Methods/Principal Findings

In the present study, quantitative proteomics using stable isotope labelling of amino acids in cell culture (SILAC) and genome next generation sequencing were used in order to better characterize in vitro generated Leishmania infantum antimony resistant mutant (Sb2000.1). Using the proteomic method, 58 proteins were found to be differentially regulated in Sb2000.1. The ABC transporter MRPA (ABCC3), a known marker of antimony resistance, was observed for the first time in a proteomic screen. Furthermore, transfection of its gene conferred antimony resistance in wild-type cells. Next generation sequencing revealed aneuploidy for 8 chromosomes in Sb2000.1. Moreover, specific amplified regions derived from chromosomes 17 and 23 were observed in Sb2000.1 and a single nucleotide polymorphism (SNP) was detected in a protein kinase (LinJ.33.1810-E629K).

Conclusion/Significance

Our results suggest that differentially expressed proteins, chromosome number variations (CNVs), specific gene amplification and SNPs are important features of antimony resistance in Leishmania.  相似文献   

17.

Background

Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic Gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown.

Methodology/Principal Findings

In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.

Conclusions/Significance

Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.  相似文献   

18.

Background

Filaggrin is a major protein in the epidermis. Several mutations in the filaggrin gene (FLG) have been associated with a number of conditions. Filaggrin is expressed in the tympanic membrane and could alter its mechanical properties, but the relationship between genetic variation in FLG and hearing has not yet been tested.

Methodology/Principal Findings

We examined whether loss-of function mutations R501X and 2282del4 in the FLG gene affected hearing in children. Twenty eight hearing variables representing five different aspects of hearing at age nine years in 5,377 children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort were tested for association with these mutations. No evidence of association was found between R501X or 2282del4 (or overall FLG mutation carrier status) and any of the hearing phenotypes analysed.

Conclusions/Significance

In conclusion, carrier status for common filaggrin mutations does not affect hearing in children.  相似文献   

19.

Background

Osteogenic induction and bone formation are heavily affected by environmental factors, including estrogen, estrogen receptors, and coregulatory proteins, such as the recently reported proline-, glutamic acid-, and leucine-rich protein 1(Pelp1).

Objective

To investigate Pelp1 expression in rat bone mesenchymal stem cells (rBMSCs) during cell proliferation and osteogenic differentiation.

Methods

rBMSCs were cultured in routine and osteogenic differentiation media. Cell proliferation was assessed at days 1, 3, 5, 7, 9, 11, 14, and 21. Pelp1 protein expression in the nucleus and cytoplasm were detected by immunocytochemical analysis. Real-time RT-PCR and western blot were used to detect mRNA and protein expressions of Pelp1, osteocalcin (OCN), and alkaline phosphatase (ALP).

Results

Over 21 days, rBMSCs in routine culture exhibited a 1-2 day lag phase and exponential growth from day 3 to 9, plateauing at day 9, and correlated with temporal mRNA expression of Pelp1, which almost reached baseline levels at day 21. In osteogenic induction cultures, Pelp1 mRNA levels rose at day 9 and steadily increased until day 21, reaching 6.8-fold greater value compared with day 1. Interestingly, Pelp1 mRNA expression in osteogenic cultures exhibited a trend similar to that of OCN expression. Pelp1 knockdown by siRNA transfection inhibited undifferentiated rBMSC proliferation, and bone markers OCN and ALP expressions in rBMSCs cultured in routine and osteogenic differentiation media.

Conclusions

Pelp1 may be a key player in BMSCs proliferation and osteogenic differentiation, meriting further consideration as a target for development of therapies for pathological bone loss conditions, such as menopausal bone loss.  相似文献   

20.

Background

Continuous ambulatory peritoneal dialysis (CAPD) patients with diabetes are at increased risk of mortality and high peritoneal transporters appear to contribute to poor survival. However, little is known about the combined impacts of high peritoneal transporters and diabetes on mortality.

Methods

This was a prospective observational cohort study. 776 incident CAPD patients were enrolled. Unadjusted and adjusted Cox proportional regression models were used to evaluate the association and interaction of peritoneal transport and diabetic status with mortality

Results

In the entire cohort, high peritoneal transport status was associated with an increased risk of all-cause mortality in unadjusted model [hazard ratio (HR) 2.35, 95% confidence interval (CI) 1.30 to 4.25, P = 0.01], but this association was not significant in multivariable model. There was an interaction between peritoneal membrane transport status and diabetes (P = 0.028). Subgroup analyses showed that compared to low and low average transporters, high transporters was associated with a higher risk of all-cause mortality (adjusted HR 1.78, 95% CI 1.07 to 4.70, P = 0.04) in CAPD patients without diabetes, but not in those with diabetes (adjusted HR 0.79, 95%CI 0.33 to 1.89, P = 0.59). Results were similar when transport status was assessed as a continuous variable.

Conclusions

The association between high peritoneal transport and all-cause mortality was likely to vary with diabetes status. High peritoneal transport was associated with an elevated risk of death among CAPD patients without diabetes, but not in those with diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号