首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cyathocotylidae is a globally distributed family of digeneans parasitic as adults in fish, reptiles, birds and mammals in both freshwater and marine environments. Molecular phylogenetic analysis of interrelationships among cyathocotylids is lacking with only a few species included in previous studies. We used sequences of the nuclear 28S rRNA gene to examine phylogenetic affinities of 11 newly sequenced taxa of cyathocotylids and the closely related family Brauninidae collected from fish, reptiles, birds and dolphins from Australia, Southeast Asia, Europe, North America and South America. This is the first study to provide sequence data from adult cyathocotylids parasitic in fish and reptiles. Our analyses demonstrated that the members of the genus Braunina (family Brauninidae) belong to the Cyathocotylidae, placing the Brauninidae into synonymy with the Cyathocotylidae. In addition, our DNA sequences supported the presence of a second species in the currently monotypic Braunina. Our phylogeny revealed that Cyathocotyle spp. from crocodilians belong to a separate genus (Suchocyathocotyle, previously proposed as a subgenus) and subfamily (Suchocyathocotylinae subfam. n.). Morphological study of Gogatea serpentum indicum supported its elevation to species as Gogatea mehri. The phylogeny did not support Holostephanoides within the subfamily Cyathocotylinae; instead, Holostephanoides formed a strongly supported clade with members of the subfamily Szidatiinae (Gogatea and Neogogatea). Therefore, we transfer Holostephanoides into the Szidatiinae. DNA sequence data revealed the potential presence of cryptic species reported under the name Mesostephanus microbursa. Our phylogeny indicated at least two major host switching events in the evolutionary history of the subfamily Szidatiinae which likely resulted in the transition of these parasites from birds to fish and snakes. Likewise, the transition to dolphins by Braunina represents another major host switching event among the Cyathocotylidae. In addition, our phylogeny revealed more than a single transition between freshwater and marine environments demonstrated in our dataset by Braunina and some Mesostephanus.  相似文献   

2.
The Dicrocoeliidae is a highly diverse family of digeneans parasitic in amniotic tetrapods. Detailed molecular phylogenetic analysis of dicrocoeliids is lacking and only a few dicrocoeliids from mammals have been included in previous studies. Sequence data were previously absent for the Anenterotrematidae that shares several morphological characteristics with dicrocoeliids. We examined phylogenetic affinities of several newly sequenced (nuclear 28S rDNA) taxa of dicrocoeliids and anenterotrematids collected from small mammals in Ecuador, Panama, Peru, USA and Vietnam. Our analyses demonstrated that the two anenterotrematid genera (Anenterotrema, Apharyngotrema) belong to the Dicrocoeliidae, placing the Anenterotrematidae into synonymy with the Dicrocoeliidae. Molecular data combined with morphological examination of type and new specimens provided evidence that Parametadelphis and Apharyngotrema are junior synonyms of Metadelphis, with all Metadelphis species lacking a digestive system. Phylogenetic analysis demonstrates that reduction of the alimentary tract in Lutztrema and its loss in Anenterotrema and Metadelphis represent at least two independent evolutionary events. Genera Brachylecithum, Brachydistomum, and Lyperosomum proved to be non-monophyletic, each likely representing more than a single genus. Furthermore, phylogenetic analysis did not support monophyly of the two largest subfamilies of the Dicrocoeliidae (Dicrocoeliinae and Leipertrematinae) with the other two subfamilies not included in this study. Therefore, we propose to abandon the current subfamily division of the Dicrocoeliidae. Analysis of host associations indicates multiple host-switching events throughout evolution of dicrocoeliids. Lastly, analysis of dicrocoeliid geographic distribution revealed that nearly all major clades included taxa from more than a single zoogeographic realm with the exception of the clade Anenterotrema?+?Metadelphis, found only in the Neotropics.  相似文献   

3.
Studies on infection patterns of diplostomid parasites in commercially exploited fishes have not been done in Patagonia (Argentina). The aim of this work was to study the population dynamics of two diplostomid species in the brain of patagonian silversides (Odontesthes hatchery), the interaction between them, and effect on health and physical condition of the hosts. Tylodelphys destructor and Diplostomum mordax metacercariae in the brain of Patagonian silversides in Lake Pellegrini were studied between January 1991 and February 1992. Tylodelphys destructor parasitized all silversides examined; prevalence of D. mordax varied between 7% and 100%. Mean intensity for T. destructor was 35-140 and for D. mordax was 3-49. Highest mean intensities of T. destructor coincided with the lowest mean intensities of D. mordax. Recruitment seems to occur from July-November for T. destructor and from April-June for D. mordax, revealing a temporal segregation with inverse patterns of infection and recruitment. Tylodelphys destructor has higher intensities in the brain of the older fish, whereas D. mordax did not, suggesting another type of segregation. There were no evidences of gross pathology. No covariation between abundance of larvae and condition factor, gonadosomatic index, and gut fullness was detected.  相似文献   

4.
The phylogeny of the Family Spongodiscidae (polycystine Radiolaria), which includes Dictyocoryne profunda Ehrenberg, Dictyocoryne truncatum (Ehrenberg) and Spongaster tetras Ehrenberg, was examined using 18S ribosomal DNA (small-subunit ribosomal DNA) sequence analysis. Three types of tree construction methods, the neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) methods, were used to infer the phylogenetic relationships of the polycystine and acantharian Radiolaria among eukaryotes. The obtained 18S rDNA molecular phylogenetic tree argues for the monophyly of the two groups. Furthermore, the Polycystinea is divided into at least two distinct lineages consisting of: (1) colonial and skeletonless Polycystinea, including Thalassicollidae, Collospaeridae, and Sphaerozoidae; and (2) shell-bearing solitary Polycystinea, including Spongodiscidae. The Polycystinea thus show a paraphyly among Radiolaria. Moreover, the monophyly of the clade including the acantharians and the spongodiscid polycystines was supported by bootstrap values, which were 94%, 53%, and 59% in the NJ, MP, and ML analyses, respectively. This lineage is characterized by having latticed or spongy skeletons of different chemical composition, namely SiO2 (Class Polycystinea) or SrSO4 (Class Acantharea). According to the present taxonomic scheme, the Acantharea and the Polycystinea have not been placed in different classes, but the results of our molecular study show the opposite. We therefore suggest, based on the monophyly of the two clades, that a new taxonomic group of Radiolaria can be established. Our molecular data also suggest that the currently used radiolarian taxonomic system may need serious revisions.  相似文献   

5.
Phylogenetic relationships of genera Allograpta, Sphaerophoria and Exallandra (Diptera, Syrphidae) were analyzed based on sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. The three genera are members of the subfamily Syrphinae, where nearly all members feed as larvae on soft-bodied Hemiptera and other arthropods. Phytophagous species have recently been discovered in two subgenera of Allograpta, sg Fazia and a new subgenus from Costa Rica. Phylogenetic analyses of the combined datasets were performed using parsimony, under static alignment and direct optimization, maximum likelihood and Bayesian inference. Congruent topologies obtained from all the analyses indicate paraphyly of the genus Allograpta with respect to Sphaerophoria and Exallandra. Exallandra appears embedded in the genus Sphaerophoria, and both genera are placed within Allograpta. The distribution of phytophagous taxa in Allograpta indicates that plant feeding evolved at least twice in this group.  相似文献   

6.
Partial DNA sequences of two mitochondrial genes [cytochrome oxidase subunit I (COI) and 16S rRNA] from 59 specimens of Iberus were used to test the validity of the described morphospecies of this genus, and examine genetic divergences within and between main phylogenetic groups. Both gene fragments showed phylogenetic concordance. The COI gene was found to be faster evolving than the 16S gene and was fully protein-coding with no insertions or deletions. 16S rRNA was more informative than COI for resolving basal nodes. Both individual and combined analyses of the two gene fragments revealed five main phylogroups. These five groups are genetically unique lineages that are allopatrically distributed and considered to have full species status. Further subdivisions were also considered. Shell morphology was suitable for delimiting species boundaries, but several incongruences between morphology and mtDNA phylogeny were observed. These incongruences were considered consequence of hybridization between Iberus cobosi and Iberus marmoratus , and the result of shell shape polymorphism in Iberus rositai . According to spatial patterns of sequence divergence, life habits and shell morphology may be concluded that the keeled-flat shelled snails independently originated several times within Iberus and they could represent cases of similar shell adaptation to a karstic arid environment.  相似文献   

7.
8.
Molecular data and the evolutionary history of dinoflagellates   总被引:7,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

9.
Litvaitis  M. K.  Newman  L. J. 《Hydrobiologia》2001,444(1-3):177-182
Systematic relationships within the cotylean family Pseudocerotidae were examined using nucleotide sequences of the D3 expansion segment of the 28S rDNA gene. A previously suggested separation of Pseudoceros and Pseudobiceros based on the number of male reproductive systems was confirmed. Regardless of the algorithm employed, Pseudoceros always formed a monophyletic clade. Pseudobiceros appeared to be paraphyletic; however, a constrained maximum parsimony tree was not significantly longer (2 steps, = 0.05). Additionally, the genera Maiazoon, Phrikoceros and Tytthosoceros were validated as taxonomic entities, and their relationships to other genera within the family were determined. Molecular data also supported species separations based on colour patterns. An intraspecific genetic distance of 1.14% was found for Pseudoceros bifurcus, whereas the intrageneric distance was 3.58%. Genetic distances among genera varied, with the closest distance being 2.048% between Pseudobiceros and Maiazoon, and the largest distance (8.345%) between Pseudoceros and Tytthosoceros.  相似文献   

10.
Phylogenetic relationships, evolutionary history and systematics of tapeworms of the family Catenotaeniidae were studied using nucleotide sequences of the partial 28S nuclear rDNA (ca. 1,500 bp) and mitochondrial 12S–16S DNA (ca. 820 bp) genes. The tapeworm material consists of 29 species, including type species of the genera Catenotaenia Janicki, 1904, Catenotaenioides Haukisalmi, Hardman and Henttonen, 2010, Pseudocatenotaenia Tenora, Mas‐Coma, Murai and Feliu, 1980, Skrjabinotaenia Akhumyan, 1946, Meggittina Lynsdale, 1953, and Hemicatenotaenia Tenora, 1977. The basal phylogenetic structure of the Catenotaeniidae remains unresolved, but it is shown that most of the catenotaeniids in Eurasia and Africa comprise a large clade represented by species of Catenotaenia, Catenotaenioides, Skrjabinotaenia and Meggittina, parasitizing murid, cricetid, nesomyid and sciurid rodents. The results suggest that the divergence and early radiation of this clade have occurred in murid rodents (represented by Apodemus spp. and Mus musculus in the present material) in western Eurasia, followed by colonization of Africa, most likely independently of the colonization of their murid hosts between these continents. There is very little evidence of cophylogeny between hosts and parasites, suggesting that host transfers have played a major role in the divergence of catenotaeniids. In Africa, catenotaeniids have radiated in other murid and nesomyid rodents, and later colonized Madagascar and recolonized Eurasia. The results also show that the subfamily Skrjabinotaeniinae (including Skrjabinotaenia and Meggittina) is monophyletic, but the Catenotaeniinae (including Catenotaenia, Catenotaenioides, Pseudocatenotaenia and Hemicatenotaenia) is clearly non‐monophyletic. In addition, the genera Catenotaenia and Skrjabinotaenia were both found to be non‐monophyletic. Based on the phylogenetic and morphological evidence, several taxonomical changes, mainly new combinations, are proposed. Overall, the present results suggest that the family Catenotaeniidae is in need of major systematic revision.  相似文献   

11.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

12.
Tit-tyrants of the genus Anairetes presently consist of six species; five inhabit various regions along the Andean cordillera of South America and one is endemic to the Juan Fernandez Islands off the coast of Chile. Data from mtDNA ND2 and Cyt b sequences were used to construct a phylogeny for all Anairetes species as well as Uromyias agilis, a closely related genus, and Stigmatura as an outgroup, to determine their relationships and history of radiation in South America. Results strongly supported the following paired relationships: A. nigrocristatus-A. reguloides, A. flavirostris-A. alpinus, and A. parulus-A. fernandezianus. This dataset, however, could not resolve basal nodes; therefore relationships among these pairs remains obscure. Moreover the genus Uromyias, controversially separated on morphological criteria from Anairetes, fell within the Anairetes clade, although its exact position could not be ascertained with confidence. The molecular data indicate that this group probably radiated within the past 2 million years, concomitant with highly accentuated cycles of global climatic change. Certain high altitude areas within the Andes may have been stable during global climatic changes and may have served as refugia during the Plio-Pleistocene.  相似文献   

13.
The family Leiognathidae, commonly known as ponyfish or slip mouth, comprises three genera, each being characterized mainly by mouth morphology. To date, however, neither the phylogenetic relationships within the family nor monophyly of the genera has been tested. The phylogenetic relationships among 14 species of Leiognathidae, inferred from two protein coding mitochondrial genes (ND4 and 5), indicated monophyly of the studied species form genera Gazza and Secutor, and paraphyly of the genus Leiognathus, with L. equulus occupying a basal branch of the family. The relationships allowed phylogenetic analyses of mouthpart structures and light organ systems. The results suggested that the morphology of the upwardly and forwardly protractile mouth types (latter with canine-like teeth) are phylogenetically informative, and the downwardly protractile mouth type being ancestral in the family. The results also suggested that internal sexual dimorphism of the light organ system was present in the common ancestor of a sister clade to L. equulus, whereas external sexual dimorphism seems to have evolved subsequently in two monophyletic subgroups.  相似文献   

14.
The evolutionary history of the Chydoridae (Crustacea: Cladocera)   总被引:3,自引:0,他引:3  
Although much is known about the evolutionary history of the pelagic 'cladocerans', there is little information on benthic families such as the Chydoridae. In this study, we examine the phylogenetic history of 37 chydorid species using sequence variation in two mitochondrial genes, COI and 16S rDNA, and one nuclear gene, 18S rDNA. The four recognized subfamilies of chydorids (Eurycercinae, Saycinae, Aloninae and Chydorinae) were well supported, being separated by large sequence divergences of 14.3–16.4%. By contrast, the existing taxonomic system appears to be less clear at a generic level, since many genera (e.g. Alona , Chydorus , Pleuroxus ) consist of an amalgam of distantly related species. However, among those genera which are monophyletic, levels of divergence are very high, suggesting that they originated somewhere in the mid-Palaeozoic. The factors involved in promoting diversification in this group are discussed.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79, 629–643.  相似文献   

15.
Arenicolids comprise a group of four genera in which about 30 nominal species are described. Whereas the biology of many arenicolids is well known, the phylogenetic relationships of these worms are inadequately studied. A close relationship of Arenicolidae and Maldanidae is generally accepted. The phylogenetic relationships of arenicolid taxa were reconstructed based on sequence data of the mitochondrial 16S rRNA gene, the nuclear 18S rRNA gene, and a small fraction of the nuclear 28S rRNA gene. Members of all described arenicolid genera are included in the data set. Phylogenetic analyses were conducted using Maximum Likelihood, Bayesian inference, and Maximum Parsimony. The monophyly of the Maldanidae, as well as of the Arenicolidae is supported by all conducted analyses. Two well supported major clades are highest ranked sister taxa in the Arenicolidae: one containing all Abarenicola species and one containing Arenicola, Arenicolides, and Branchiomaldane. Evidence is given for a closer relationship between the two investigated Branchiomaldane species and Arenicolides ecaudata in the combined analysis. In the light of the molecular data the best explanation for structural and morphological observations is that Branchiomaldane evolved by progenesis.  相似文献   

16.
Phylogenetic relationships of the Poaceae subfamily, Pooideae, were estimated from the sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The entire ITS region of 25 species belonging to 19 genera representing seven tribes was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The published sequence of rice, Oryza saliva, was used as the outgroup. Sequences of these taxa were analyzed with maximum parsimony (PAUP) and the neighbor-joining distance method (NJ). Among the tribes, the Stipeae, Meliceae and Brachypodieae, all with small chromosomes and a basic number more than x=7, diverged in succession. The Poeae, Aveneae, Bromeae and Triticeae, with large chromosomes and a basic number of x=7, form a monophyletic clade. The Poeae and Aveneae are the sister group of the Bromeae and Triticeae. On the ITS tree, the Brachypodieae is distantly related to the Triticeae and Bromeae, which differs from the phylogenies based on restriction-site variation of cpDNA and morphological characters. The phylogenetic relationships of the seven pooid tribes inferred from the ITS sequences are highly concordant with the cytogenetic evidence that the reduction in chromosome number and the increase in chromosome size evolved only once in the pooids and pre-dated the divergence of the Poeae, Aveneae, Bromeae and Triticeae.This paper reports factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitableThis paper is a cooperative investigation of USDA-ARS and the Utah Agricultural Experiment Station. Logan, Utah 84322. Journal Paper No. 4581  相似文献   

17.
This is an expanded study of the relationships among the deuterostome animals based on combined, nearly complete 28S and 18S rRNA genes (>3925 nt.). It adds sequences from 20 more taxa to the approximately 45 sequences used in past studies. Seven of the new taxa were sequenced here (brittle star Ophiomyxa, lizard Anolis, turtle Chrysemys, sixgill shark Hexanchus, electric ray Narcine, Southern Hemisphere lamprey Geotria, and Atlantic hagfish Myxine for 28S), and the other 13 were from GenBank and the literature (from a chicken, dog, rat, human, three lungfishes, and several ray-finned fishes, or Actinopterygii). As before, our alignments were based on secondary structure but did not account for base pairing in the stems of rRNA. The new findings, derived from likelihood-based tree-reconstruction methods and by testing hypotheses with parametric bootstrapping, include: (1) brittle star joins with sea star in the echinoderm clade, Asterozoa; (2) with two hagfishes and two lampreys now available, the cyclostome (jawless) fishes remain monophyletic; (3) Hexanchiform sharks are monophyletic, as Hexanchus groups with the frilled shark, Chlamydoselachus; (4) turtle is the sister taxon of all other amniotes; (5) bird is closer to the lizard than to the mammals; (6) the bichir Polypterus is in a monophyletic Actinopterygii; (7) Zebrafish Danio is the sister taxon of the other two teleosts we examined (trout and perch); (8) the South American and African lungfishes group together to the exclusion of the Australian lungfish. Other findings either upheld those of the previous rRNA-based studies (e.g., echinoderms and hemichordates group as Ambulacraria; orbitostylic sharks; batoids are not derived from any living lineage of sharks) or were obvious (monophyly of mammals, gnathostomes, vertebrates, echinoderms, etc.). Despite all these findings, the rRNA data still fail to resolve the relations among the major groups of deuterostomes (tunicates, Ambulacraria, cephalochordates and vertebrates) and of gnathostomes (chondrichthyans, lungfishes, coelacanth, actinopterygians, amphibians, and amniotes), partly because tunicates and lungfishes are rogue taxa that disrupt the tree. Nonetheless, parametric bootstrapping showed our RNA-gene data are only consistent with these dominant hypotheses: (1) deuterostomes consist of Ambulacraria plus Chordata, with Chordata consisting of tunicates and 'vertebrates plus cephalochordates'; and (2) lungfishes are the closest living relatives of tetrapods.  相似文献   

18.
19.
Pseudochattonella verruculosa is a heterokont flagellate and has frequently been found associated with multi-species harmful algal blooms in Wellington Harbour. In this study the partial sequences of the nuclear encoded LSU rDNA and the large subunit of ribulose bisphosphate carboxylase (rbcL) of Pseudochattonella isolated from Wellington Harbour indicate that it is similar to P. verruculosa, while sequences of mitochondrial encoded COI, are similar to those of Pseudochattonella farcimen. As with P. farcimen, the Wellington Pseudochattonella lacked violaxanthin, lutein and anteroxanthin, three pigments detected only in P. verruculosa. The Wellington isolate also contains zeaxanthin which is absent in P. farcimen. Among all Pseudochattonella, cells of the Wellington isolate are the most variable in terms of both size and shape. Mucocysts of the Wellington Pseudochattonella also have the greatest degree of variation – from small, ‘bullet’-shape to large oval, oblong or ‘sausage’-like. In the sexual reproduction phase two gametes of the Wellington isolate fuse to form a zygote which gives rise to a large multi-nucleate cell. At times two or more of these large multi-nucleate cells fuse further to form a ‘massive’, plasmodium-like aggregate (up to 200 μm long). Positive feeding and toxicity tests on rotifers confirmed that the Wellington Pseudochattonella is cytotoxic and probably also contributed to the May 2010 fish kills. As molecular phylogenies do not conclusively support the separation of the Wellington Harbour Pseudochattonella from P. verruculosa or P. farcimen, it is tentatively named as Pseudochattonella cf. verruculosa.  相似文献   

20.
Kosteletzkya s.s. is a genus of 17 species (excluding the endemic species of Madagascar), found in the New World, continental Africa, Madagascar, and Southeast Asia. Recent chromosome counts revealed diploid, tetraploid, and hexaploid species. To estimate the history of the genus, we sequenced nuclear and plastid loci for nearly all Kosteletzkya spp., in the majority of cases, with multiple accessions per species. The African species form a paraphyletic grade relative to a New World clade. Polyploidy has occurred only in some African species, resulting in the relatively ancient formation of one putative autotetraploid species (K. semota), one recent allotetraploid species (K. borkouana), two relatively ancient allotetraploid species (K. begoniifolia and K. rotundalata) and one recent allohexaploid species (K. racemosa). Our inferences regarding the hypothesized parentage of the polyploids mostly corroborate previous work based on chromosome‐pairing patterns in artificial hybrids, highlighting the utility of these complementary data sources. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 421–435.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号