首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predator control and sport hunting are often used to reduce predator populations and livestock depredations, – but the efficacy of lethal control has rarely been tested. We assessed the effects of wolf mortality on reducing livestock depredations in Idaho, Montana and Wyoming from 1987–2012 using a 25 year time series. The number of livestock depredated, livestock populations, wolf population estimates, number of breeding pairs, and wolves killed were calculated for the wolf-occupied area of each state for each year. The data were then analyzed using a negative binomial generalized linear model to test for the expected negative relationship between the number of livestock depredated in the current year and the number of wolves controlled the previous year. We found that the number of livestock depredated was positively associated with the number of livestock and the number of breeding pairs. However, we also found that the number of livestock depredated the following year was positively, not negatively, associated with the number of wolves killed the previous year. The odds of livestock depredations increased 4% for sheep and 5–6% for cattle with increased wolf control - up until wolf mortality exceeded the mean intrinsic growth rate of wolves at 25%. Possible reasons for the increased livestock depredations at ≤25% mortality may be compensatory increased breeding pairs and numbers of wolves following increased mortality. After mortality exceeded 25%, the total number of breeding pairs, wolves, and livestock depredations declined. However, mortality rates exceeding 25% are unsustainable over the long term. Lethal control of individual depredating wolves may sometimes necessary to stop depredations in the near-term, but we recommend that non-lethal alternatives also be considered.  相似文献   

2.
Sport hunting has provided important economic incentives for conserving large predators since the early 1970''s, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.  相似文献   

3.
Although cougars (Puma concolor) appear to be recolonizing the midwestern United States, there is concern that hunting in source populations (primarily the Black Hills, SD and WY, USA) may prevent cougars from dispersing eastward. We use carcass data of cougars (n =147 carcasses at known locations, of which 111 were of known sex) in the Midwest collected during 1990–2015 to quantify whether cougar hunting in the Black Hills affected cougar distribution and presence in the Midwest. We separated carcass data into 2 time periods: before hunting in the Black Hills (i.e., pre-hunt; 1990–2004) and after hunting (i.e., post-hunt; 2005–2015). We hypothesized that if hunting prevented dispersal into the Midwest, cougar distribution would be random and their presence less, relative to the pre-hunt period. We also were interested in sex ratios of carcasses over time, given the importance of that demographic metric to the potential establishment of viable populations. During the pre-hunt period, 25 carcasses were dispersed randomly in the Midwest. During the post-hunt period, we found nearly 4 times the number of carcasses in the Midwest (n = 86), carcasses were significantly clustered, and a greater percentage of carcasses were female (pre-hunt n = 6 [24%]; post-hunt n = 27 [31%]). Relative to the pre-hunt period, we observed a 460-km northward shift in the directional distribution of carcass locations during the post-hunt period. These findings do not support the idea that hunting in the Black Hills has prevented cougar presence from increasing in the Midwest. Alternatively, we suggest the potential for immigration from cougar populations farther to the west as an explanation for the increase in cougar presence (particularly females) confirmed after the initiation of cougar hunting in the Black Hills. © 2019 The Wildlife Society.  相似文献   

4.
Several conceptual models describing patterns of prey selection by predators have been proposed, but such models rarely have been tested empirically, particularly with terrestrial carnivores. We examined patterns of prey selection by sympatric wolves ( Canis lupus ) and cougars ( Puma concolor ) to determine i) if both predators selected disadvantaged prey disproportionately from the prey population, and ii) if the specific nature and intensity of prey selection differed according to disparity in hunting behavior between predator species. We documented prey characteristics and kill site attributes of predator kills during winters 1999–2001 in Idaho, and located 120 wolf-killed and 98 cougar-killed ungulates on our study site. Elk ( Cervus elephus ) were the primary prey for both predators, followed by mule deer ( Odocoileus hemionus ). Both predators preyed disproportionately on elk calves and old individuals; among mule deer, wolves appeared to select for fawns, whereas cougars killed primarily adults. Nutritional status of prey, as determined by percent femur marrow fat, was consistently poorer in wolf-killed prey. We found that wolf kills occurred in habitat that was more reflective of the entire study area than cougar kills, suggesting that the coursing hunting behavior of wolves likely operated on a larger spatial scale than did the ambush hunting strategy of cougars. We concluded that the disparity in prey selection and hunting habitat between predators probably was a function of predator-specific hunting behavior and capture success, where the longer prey chases and lower capture success of wolf packs mandated a stronger selection for disadvantaged prey. For cougars, prey selection seemed to be limited primarily by prey size, which could be a function of the solitary hunting behavior of this species and the risks associated with capturing prime-aged prey.  相似文献   

5.
Abstract: In western Canada it is illegal to trap or snare cougars (Puma concolor), but cougars are sometimes caught accidentally in snares placed near carrion baits, a technique commonly used by trappers to harvest wolves (Canis lupus). We studied cougar foraging ecology and survival in west-central Alberta to estimate the propensity for cougars to scavenge, their susceptibility to snaring at trapper bait stations, and the implications these have for managing cougar populations. During 2005–2008, we used data from visits to 3,407 Global Positioning System (GPS) location clusters and >400 km of snow tracking of 44 cougars to locate foraging events and calculate scavenging rates. We identified 83 instances of scavenging, and 64% of monitored cougars scavenged at least once. Scavenging rates were higher in winter (0.12 events/week) than in summer (0.04 events/week), reflecting seasonal variation in carrion availability. Individual cougars scavenged at different rates, and winter feeding on carrion occupied up to 50% of total carcass handling time for some cougars. Based on these results we conclude that cougars are facultative scavengers. A propensity to scavenge made cougars susceptible to snaring causing high annual mortality in radiocollared cougars (0.11, 95% CI = 0.03–0.21). Provincial cougar mortality data demonstrate that snaring has increased dramatically as a mortality source in Alberta over the last 2 decades. Mortalities of radiocollared cougars during our study were 100% human caused and the addition of snaring mortality to already high hunting mortality resulted in low annual survival (0.67, 95% CI = 0.53–0.81). Our study is one of the first to identify population-level consequences for nontarget animals killed unintentionally by indiscriminate harvest techniques in a terrestrial ecosystem. Maintaining sustainable cougar harvest where snaring at carrion baits is permitted may require flexible hunting quotas capable of accommodating high cougar snaring mortalities in some years.  相似文献   

6.
As human populations continue to expand across the world, the need to understand and manage wildlife populations within the wildland – urban interface is becoming commonplace. This is especially true for large carnivores as these species are not always tolerated by the public and can pose a risk to human safety. Unfortunately, information on wildlife species within the wildland – urban interface is sparse, and knowledge from wildland ecosystems does not always translate well to human‐dominated systems. Across western North America, cougars (Puma concolor) are routinely utilizing wildland – urban habitats while human use of these areas for homes and recreation is increasing. From 2007 to 2015, we studied cougar resource selection, human–cougar interaction, and cougar conflict management within the wildland – urban landscape of the northern Front Range in Colorado, USA. Resource selection of cougars within this landscape was typical of cougars in more remote settings but cougar interactions with humans tended to occur in locations cougars typically selected against, especially those in proximity to human structures. Within higher housing density areas, 83% of cougar use occurred at night, suggesting cougars generally avoided human activity by partitioning time. Only 24% of monitored cougars were reported for some type of conflict behavior but 39% of cougars sampled during feeding site investigations of GPS collar data were found to consume domestic prey items. Aversive conditioning was difficult to implement and generally ineffective for altering cougar behaviors but was thought to potentially have long‐term benefits of reinforcing fear of humans in cougars within human‐dominated areas experiencing little cougar hunting pressure. Cougars are able to exploit wildland – urban landscapes effectively, and conflict is relatively uncommon compared with the proportion of cougar use. Individual characteristics and behaviors of cougars within these areas are highly varied; therefore, conflict management is unique to each situation and should target individual behaviors. The ability of individual cougars to learn to exploit these environments with minimal human–cougar interactions suggests that maintaining older age structures, especially females, and providing a matrix of habitats, including large connected open‐space areas, would be beneficial to cougars and effectively reduce the potential for conflict.  相似文献   

7.
The effects of increased mortality on the spatial dynamics of solitary carnivores are not well understood. We examined the spatial ecology of two cougar populations that differed in hunting intensity to test whether increased mortality affected home range size and overlap. The stability hypothesis predicts that home range size and overlap will be similar for both sexes among the two areas. The instability hypothesis predicts that home range size and overlap will be greater in the heavily hunted population, although may differ for males versus females due to behavior strategies. We marked 22 adult resident cougars in the lightly hunted population and 20 in the heavily hunted population with GPS collars from 2002 to 2008. Cougar densities and predation rates were similar among areas, suggesting no difference in per capita resources. We compared home range size, two‐dimensional home range overlap, and three‐dimensional utilization distribution overlap index (UDOI) among annual home ranges for male and female cougars. Male cougars in the heavily hunted area had larger sized home ranges and greater two‐dimensional and three‐dimensional UDOI overlap than those in the lightly hunted area. Females showed no difference in size and overlap of home range areas between study populations – further suggesting that differences in prey quantity and distribution between study areas did not explain differences in male spatial organization. We reject the spatial stability hypothesis and provide evidence to support the spatial instability hypothesis. Increased hunting and ensuing increased male home range size and overlap may result in negative demographic effects for cougars and potential unintended consequences for managers.  相似文献   

8.
Wildlife agencies typically attempt to manage carnivore numbers in localized game management units through hunting, and do not always consider the potential influences of immigration and emigration on the outcome of those hunting practices. However, such a closed population structure may not be an appropriate model for management of carnivore populations where immigration and emigration are important population parameters. The closed population hypothesis predicts that high hunting mortality will reduce numbers and densities of carnivores and that low hunting mortality will increase numbers and densities. By contrast, the open population hypothesis predicts that high hunting mortality may not reduce carnivore densities because of compensatory immigration, and low hunting mortality may not result in more carnivores because of compensatory emigration. Previous research supported the open population hypothesis with high immigration rates in a heavily hunted (hunting mortality rate=0.24) cougar population in northern Washington. We test the open population hypothesis and high emigration rates in a lightly hunted (hunting mortality rate=0.11) cougar population in central Washington by monitoring demography from 2002 to 2007. We used a dual sex survival/fecundity Leslie matrix to estimate closed population growth and annual census counts to estimate open population growth. The observed open population growth rate of 0.98 was lower than the closed survival/fecundity growth rates of 1.13 (deterministic) and 1.10 (stochastic), and suggests a 12–15% annual emigration rate. Our data support the open population hypothesis for lightly hunted populations of carnivores. Low hunting mortality did not result in increased numbers and densities of cougars, as commonly believed because of compensatory emigration.  相似文献   

9.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

10.
Large carnivores inhabiting human-dominated landscapes often interact with people and their properties, leading to conflict scenarios that can mislead carnivore management and, ultimately, jeopardize conservation. In northwest Spain, brown bears Ursus arctos are strictly protected, whereas sympatric wolves Canis lupus are subject to lethal control. We explored ecological, economic and societal components of conflict scenarios involving large carnivores and damages to human properties. We analyzed the relation between complaints of depredations by bears and wolves on beehives and livestock, respectively, and bear and wolf abundance, livestock heads, number of culled wolves, amount of paid compensations, and media coverage. We also evaluated the efficiency of wolf culling to reduce depredations on livestock. Bear damages to beehives correlated positively to the number of female bears with cubs of the year. Complaints of wolf predation on livestock were unrelated to livestock numbers; instead, they correlated positively to the number of wild ungulates harvested during the previous season, the number of wolf packs, and to wolves culled during the previous season. Compensations for wolf complaints were fivefold higher than for bears, but media coverage of wolf damages was thirtyfold higher. Media coverage of wolf damages was unrelated to the actual costs of wolf damages, but the amount of news correlated positively to wolf culling. However, wolf culling was followed by an increase in compensated damages. Our results show that culling of the wolf population failed in its goal of reducing damages, and suggest that management decisions are at least partly mediated by press coverage. We suggest that our results provide insight to similar scenarios, where several species of large carnivores share the landscape with humans, and management may be reactive to perceived conflicts.  相似文献   

11.
We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy. © 2011 The Wildlife Society.  相似文献   

12.
Conservation and management efforts have resulted in population increases and range expansions for some apex predators, potentially changing trophic cascades and foraging behavior. Changes in sympatric carnivore and dominant scavenger populations provide opportunities to assess how carnivores affect one another. Cougars (Puma concolor) were the apex predator in the Great Basin of Nevada, USA, for over 80 years. Black bears (Ursus americanus) have recently recolonized the area and are known to heavily scavenge on cougar kills. To evaluate the impacts of sympatric, recolonizing bears on cougar foraging behavior in the Great Basin, we investigated kill sites of 31 cougars between 2009 and 2017 across a range of bear densities. We modeled the variation in feeding bout duration (number of nights spent feeding on a prey item) and the proportion of primary prey, mule deer (Odocoileus hemionus), in cougar diets using mixed‐effects models. We found that feeding bout duration was driven primarily by the size of the prey item being consumed, local bear density, and the presence of dependent kittens. The proportion of mule deer in cougar diet across all study areas declined over time, was lower for male cougars, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, cougar consumption of feral horses increased over time. Our results suggest that higher bear densities over time may reduce cougar feeding bout durations and influence the prey selection trade‐off for cougars when alternative, but more dangerous, large prey are available. Shifts in foraging behavior in multicarnivore systems can have cascading effects on prey selection. This study highlights the importance of measuring the impacts of sympatric apex predators and dominant scavengers on a shared resource base, providing a foundation for monitoring dynamic multipredator/scavenger systems.  相似文献   

13.
Understanding the social dynamics of large carnivores is critical to effective conservation and management planning. We made the first attempt to delineate both paternity and relatedness for a population of cougar (Puma concolor) using microsatellite data. We analyzed a long-term genetic dataset collected from a hunted population in the Garnet Mountains of western Montana. We assigned paternity for 62.5% of litters sampled using both exclusion and likelihood analyses. Attempts at reconstructing unsampled paternal genotypes resulted in delineating possible sires for 8 more litters. Sires were on average younger than reported for males involved in pairings assessed via field data in other cougar populations. Although most mating pairs were unrelated, 5 of 17 pairings involved cougars with levels of relatedness corresponding to half-sibling and full-sibling or parent offspring relationship (r = 0.215–0.575). Relatedness among adult and subadult males was higher than relatedness levels among adult and subadult females. Relatedness among males in the Garnet population differed from patterns hypothesized to occur under male-biased dispersal theories for cougars. The long-term impact of the turnover of resident cougars in hunted populations is still unclear and warrants additional research. Our results highlight the utility of monitoring cougar demographic parameters using a combination of genetic and field data that in turn may assist managers with determining cougar harvest quotas or strategies, harvest seasons, sustainable harvest, and the appropriate management level of cougar populations. © 2011 The Wildlife Society.  相似文献   

14.
Estimates of cougar (Puma concolor) density are among the least available of any big game species in North America because of monetary and logistical challenges. Thus, wildlife managers identify cougar density estimates as a high priority need for population estimation, developing harvest guidelines, and evaluating management objectives. Cougar densities range from <1 to almost 7 cougars/100 km2; however, the magnitude of spatial and temporal variation associated with these estimates is difficult to assess because this range of densities could potentially be reported for any given population using different demographic, temporal, durational, and analytical approaches. We used long-term global positioning system (GPS) data from collared cougars across 5 diverse study areas in Washington, USA, as the basis for calculating multiple annual independent-aged (≥18 months) cougar densities, using consistent methods, and conducted a meta-analysis to assist with statewide harvest guidelines. To generate specific harvest guidelines for unobserved populations at the management unit scale, we employed a Bayesian decision-theoretic approach that minimizes statistical risk of failing to achieve a defined harvest rate. For the 16-year field effort, we calculated 24 annual densities for independent-aged cougars. Average annual densities ranged from 1.55 ± 0.44 (SD) cougars/100 km2 (n = 5 years) to 2.79 ± 0.35 cougars/100 km2 (n = 5 years) among the 5 study areas. Explicit delineation of the cougar population demonstrated that contribution to density can vary considerably by sex and age class. Application of a 12–16% harvest rate within the risk analysis framework yielded a potential annual harvest of 249 cougars over 91,000 km2 of cougar habitat in Washington. Given the importance of density for establishing harvest guidelines, and the degree of uncertainty in projecting derived densities to future years and unstudied management units, our approach may lessen the ambiguity of extrapolations and increase the longevity of research results. Our risk analysis can be used for a diverse array of species and management objectives and be incorporated into an adaptive management framework for minimizing management risk. Our recommendations can improve standardization in reporting and interpretation of cougar density comparisons and bring clarity to the sources of variability observed in cougar populations. © 2021 The Wildlife Society.  相似文献   

15.
The geography of the Black Hills region of South Dakota and Wyoming may limit connectivity for many species. For species with large energetic demands and large home ranges or species at low densities this can create viability concerns. Carnivores in this region, such as cougars (Puma concolor), have the additive effect of natural and human-induced mortality; this may act to decrease long-term viability. In this study we set out to explore genetic diversity among cougar populations in the Black Hills and surrounding areas. Specifically, our objectives were to first compare genetic variation and effective number of breeders of cougars in the Black Hills during three harvest regimes: pre (2003–2006), moderate (2007–2010), and heavy (2011–2013), to determine if harvest impacted genetic variation. Second, we compared genetic structure of the Black Hills cougar population with cougar populations in neighboring eastern Wyoming and North Dakota. Using 20 microsatellite loci, we conducted genetic analysis on DNA samples from cougars in the Black Hills (n = 675), North Dakota (n = 113), and eastern Wyoming (n = 62) collected from 2001–2013. Here we report that the Black Hills cougar population maintained genetic variation over the three time periods. Our substructure analysis suggests that the maintenance of genetic variation was due to immigration from eastern Wyoming and possibly North Dakota.  相似文献   

16.
Although cougars (Puma concolor) were extirpated from much of midwestern North America around 1900, hard evidence of cougar presence has increased and populations have become established in the upper portions of the Midwest during the past 20 years. Recent occurrences of cougars in the Midwest are likely due to dispersal of subadult cougars into the region from established western populations, and may be indicative of further recolonization and range expansion. We compiled confirmed locations of cougars (i.e., via carcasses, tracks, photos, video, and DNA evidence) collected during 1990–2008 in 14 states and provinces of midwestern North America. We separated our study area into 2 regions (east and west), calculated number and types of confirmations, and assessed trends in confirmations during the study period. We recorded 178 cougar confirmations in the Midwest and the number of confirmations increased during the study period (r = 0.79, P ≤ 0.001). Confirmations by state or province ranged from 1 (Kansas, Michigan, and Ontario) to 67 (Nebraska). Carcasses were the most prevalent confirmation type (n = 56). Seventy-six percent of known-sex carcass confirmations were males, consistent with predominantly male-biased dispersal in cougars. More confirmations (P = 0.05) were recorded in the western region than the eastern region . Seventy-nine percent of cougar confirmations occurred within 50 km of highly suitable habitat (i.e., forest areas with steep terrain and low road and human densities). Given the number of cougar confirmations, the increasing frequency of occurrences, and that long-distance dispersal has been documented via radiocollared individuals, our research suggests that cougars are continuing to recolonize midwestern North America. © 2012 The Wildlife Society.  相似文献   

17.
We replicated the study conducted by Wielgus and Peebles (2014) on the effect of wolf mortality on livestock depredations in Montana, Wyoming and Idaho states in the US. Their best models were found to be misspecified due to the omission of the time index and incorrect functional form. When we respecified the models, this replication failed to confirm the magnitude, direction and often the very existence of the original results. Wielgus and Peebles (2014) reported that the increase in the number of wolves culled the previous year would increase the expected number of livestock killed this year by 4 to 6%. But our results showed that the culling of one wolf the previous year would decrease the expected number of cattle killed this year by 1.9%, and the expected number of sheep killed by 3.4%. However, for every wolf killed there is a corresponding 2.2% increase in the expected number of sheep killed in the same year. The increase in sheep depredation appears to be a short term phenomenon.  相似文献   

18.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

19.
Den sites are critical resources that ultimately influence the population dynamics of many species. Little is known about cougar den selection, even though dens likely play important roles in cougar fitness and kitten survivorship. Thus, we aimed to describe cougar den site selection in the Southern Yellowstone Ecosystem (SYE) at two scales (third- and fourth-order resource selection) and within an ecological framework that included environmental characteristics, as well as some measure of prey availability and anthropogenic landscape features. We documented 25 unique dens between 2002 and 2013, and gathered data on microsite characteristics and paired random points for 20 dens. The timing of dens was clumped in summer, with 56 % of 25 dens beginning in June or July. Unexpectedly, female cougars in our study system exhibited third-order selection for den areas in less rugged terrain, but did not exhibit selection for greater or lesser access to hunting opportunity, roads, water, or specific habitat classes, as compared with the remainder of their home ranges. Instead, our findings suggested that third-order selection for den areas was much less important than fourth-order selection: cougar den sites were characterized by high concealment and substantial protective structure. Therefore, our results provided evidence in support of land practices that promote and protect downed wood and heavy structure on forest floors—these will best provide opportunities for cougars to find suitable den sites and maintain parturition behaviors.  相似文献   

20.
During the last 30 years, the proportion of males in the calf harvest of moose (Alces alces) in Norway has decreased, indicating a decline in proportions of males recruited to the autumn populations. At the same time, the percentages of exclusive calf hunting permits and of calves shot have increased. The change in calf sex ratio may thus simply be the result of hunter preferences for slightly larger (6.2% higher body mass) male calves combined with fewer opportunities for selective hunting due to increasing hunting quotas of calves. We examined this hypothesis by analyzing the variation in sex, number of siblings, carcass mass, date, and location of kill of 16,330 moose calves harvested during 1970–2004. In the presence of hunting selection for larger calves, we predicted larger proportions of male calves to be harvested in populations with large sexual size dimorphism among calves. Similarly, we expected more males to be harvested from twin than single litters because hunters then can more easily compare twins and select the larger calf, which is more often a male. Increasing proportions of single female calves were also expected to occur in the daily harvest as the accumulated number of harvested calves increased and the proportion of calves left in the population decreased. We found no positive relationship between the proportion of male calves and the level of sexual size dimorphism, no clear difference in sex ratio between harvested single and twin calves, and no increase in the proportion of single female calves as the accumulated number of calves in the harvest increased. This suggests that the spatiotemporal variation in the harvest calf sex ratio in Norway most likely reflects differences in population calf sex ratios prior to the hunting season and not varying degrees of hunting selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号