首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
就胰岛素与其受体结合后, 信号传递的过程及参与信号传递的细胞内信号分子进行了综述.胰岛素作为一种重要激素,参与机体的新陈代谢, 调节细胞的生长分化.其发挥生理功能的第一步是与靶细胞膜上的受体相结合, 激活胰岛素受体的酪氨酸激酶活性, 随之磷酸化细胞内的信号分子, 从而使胰岛素的刺激信号转化为细胞反应.  相似文献   

2.
用PCR方法从人胎盘cDNA 中获得编码胰岛素受体α亚基中结合胰岛素的相对独立的结构域L1、L2以及人工设计的L1-(Ala)10-L2的基因,克隆入含T7噬菌体RNA聚合酶启动子的表达质粒pET-3a中,转化大肠杆菌BL21(DE3),用IPTG诱导表达成功。DNA测序、氨基酸组成分析以及蛋白质N端测序证明所表达的蛋白质正确。经过包涵体的分离、洗涤、溶解和纯化,得到了纯的变性状态受体的胰岛素高亲  相似文献   

3.
胰岛素受体家族的结构与功能研究   总被引:2,自引:0,他引:2  
胰岛素(insulin)与胰岛素样生长因子-1(IGF-1)分别是由胰岛β细胞和肝细胞分泌的 多肽类激素.它们通过结合并激活位于细胞膜上的受体酪氨酸激酶(RTKs),发挥重要的生理作用. 作为起始信号传导的第一步,胰岛素与IGF-1是如何与各自受体的膜外区域(ectodomain) 结合并进一步激活受体的细胞膜内酪氨酸激酶活性一直属于科学研究的关键基础问题.本文 概述了胰岛素受体家族(IR和IGF-1R)及其配体的结构与功能的特点和关系,并重点介绍 了近年来国内外在胰岛素受体家族复合体结构和功能上的研究手段和取得的突破性进展.  相似文献   

4.
 M11D杂交瘤细胞株是由人胎盘细胞膜纯化所得胰岛素受体免疫BALB/C小鼠后,取其脾细胞与同系小鼠骨髓瘤细胞株NS-1细胞融合所得。该杂交瘤细胞分泌的抗体经ELISA及放射免疫沉淀法证实为胰岛素受体特异的单克隆抗体。该抗体经Protein A-Sepharose亲和层析分离、纯化,SDS-聚丙烯酰胺梯度凝胶电泳鉴定得分子量分别为53000及23000的两条区带,免疫双扩证明为IgGl。该抗体特异地沉淀125Ⅰ-人胎盘细胞膜胰岛素受体,沉淀经SDS-聚丙烯酰胺凝胶电泳后放射自显影得分子量为135000的特异显影带,与胰岛素受体α亚基分子量相同,说明M11D为抗胰岛素受体α亚基的单克隆抗体。  相似文献   

5.
The insulin receptor (IR), the insulin-like growth factor-1 receptor (IGF1R), and the insulin/IGF1 hybrid receptors (hybR) are homologous transmembrane receptors. The peptide ligands, insulin and IGF1, exhibit significant structural homology and can bind to each receptor via site-1 and site-2 residues with distinct affinities. The variants of the Iridoviridae virus family show capability in expressing single-chain insulin/IGF1 like proteins, termed viral insulin-like peptides (VILPs), which can stimulate receptors from the insulin family. The sequences of VILPs lacking the central C-domain (dcVILPs) are known, but their structures in unbound and receptor-bound states have not been resolved to date. We report all-atom structural models of three dcVILPs (dcGIV, dcSGIV, and dcLCDV1) and their complexes with the receptors (μIR, μIGF1R, and μhybR), and probed the peptide/receptor interactions in each system using all-atom molecular dynamics (MD) simulations. Based on the nonbonded interaction energies computed between each residue of peptides (insulin and dcVILPs) and the receptors, we provide details on residues establishing significant interactions. The observed site-1 insulin/μIR interactions are consistent with previous experimental studies, and a residue-level comparison of interactions of peptides (insulin and dcVILPs) with the receptors revealed that, due to sequence differences, dcVILPs also establish some interactions distinct from those between insulin and IR. We also designed insulin analogs and report enhanced interactions between some analogs and the receptors.  相似文献   

6.
Obesity has become a serious health problem in the world, with increased morbidity, mortality, and financial burden on patients and health-care providers. The skeletal muscle is the most extensive tissue, severely affected by a sedentary lifestyle, which leads to obesity and type 2 diabetes. Obesity disrupts insulin signaling in the skeletal muscle, resulting in decreased glucose disposal, a condition known as insulin resistance. Although there is a large body of evidence on obesity-induced insulin resistance in various skeletal muscles, the molecular mechanism of insulin resistance due to a disruption in insulin receptor signaling, specifically in the gastrocnemius skeletal muscle of obese Zucker rats (OZRs), is not fully understood. This study subjected OZRs to a glucose tolerance test (GTT) to analyze insulin sensitivity. In addition, immunoprecipitation and immunoblotting techniques were used to determine the expression and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and insulin receptor-β (IRβ), and the activation of serine-632-IRS-1 phosphorylation in the gastrocnemius muscle of Zucker rats. The results show that the GTT in the OZRs was impaired. There was a significant decrease in IRS-1 levels, but no change was observed in IRβ in the gastrocnemius muscle of OZRs, compared to Zucker leans. Obese rats had a higher ratio of tyrosine phosphorylation of IRS-1 and IRβ than lean rats. In obese rats, however, insulin was unable to induce tyrosine phosphorylation. Moreover, insulin increased the phosphorylation of serine 632-IRS-1 in the gastrocnemius muscle of lean rats. However, obese rats had a low basal level of serine-632-IRS-1 and insulin only mildly increased serine phosphorylation in obese rats, compared to those without insulin. Thus, we addressed the altered steps of the insulin receptor signal transduction in the gastrocnemius muscle of OZRs. These findings may contribute to a better understanding of human obesity and type 2 diabetes.  相似文献   

7.
Insulin receptor internalization and signalling   总被引:5,自引:0,他引:5  
The insulin receptor kinase (IRK) is a tyrosine kinase whose activation, subsequent to insulin binding, is essential for insulin-signalling in target tissues. Insulin binding to its cell surface receptor is rapidly followed by internalization of insulin-IRK complexes into the endosomal apparatus (EN) of the cell. Internalization of insulin into target organs, especially liver, is implicated in effecting insulin clearance from the circulation. Internalization mediates IRK downregulation and hence attenuation of insulin sensitivity although most internalized IRKs readily recycle to the plasma membrane at physiological levels of insulin. A role for internalization in insulin signalling is indicated by the accumulation of activated IRKs in ENs. Furthermore, the maximal level of IRK activation has been shown to exceed that attained at the cell surface. Using an in vivo rat liver model in which endosomal IRKs are exclusively activated has revealed that IRKs at this intracellular locus are able by themselves to promote IRS-1 tyrosine phosphorylation and induce hypoglycemia. Furthermore, studies with isolated rat adipocytes reveal the EN to be the principle site of insulin-stimulated IRS-1 tyrosine phosphorylation and associated PI3K activation. Key steps in the termination of the insulin signal are also operative in ENs. Thus, an endosomal acidic insulinase has been identified which limits the extent of IRK activation. Furthermore, IRK dephosphorylation is effected in ENs by an intimately associated phosphotyrosine phosphatase(s) which, in rat liver, appears to regulate IRK activity in both a positive and negative fashion. Thus, insulin-mediated internalization of IRKs into ENs plays a crucial role in effecting and regulating signal transduction in addition to modulating the levels of circulating insulin and the cellular concentration of IRK in target tissues.  相似文献   

8.
There are differences between osteoclasts and osteoblastic cells in their cytosolic calcium responses to purinergic receptor activation. Application of 50 or 100 μM extracellular ATP inhibits the calcium response to a second application of ATP in osteoblastic rat osteosarcoma UMR 106 cells, but not in rabbit osteoclasts. This shows that there is adaptation to the extracellular ATP in osteoclasts, but not in the UMR 106 cells. Extracellular washing of the UMR 106 cells restores the calcium response to ATP partially but not completely, indicating that there is a purinergic receptor activation-induced desensitisation of the receptor or its linked signalling pathways. In contrast to these results, if extracellular UTP is applied first, application of ATP produces no calcium response in osteoclasts, with or without washing, while in the UMR 106 cells there is some response to the ATP, which is greatly enhanced by washing. This indicates that UTP induces a complete desensitisation of the purinergic receptor/calcium signalling system in osteoclasts, but not in the osteoblastic cells, in which there is simply competition between UTP and ATP for the same receptors. Taken together, these results demonstrate that ATP and UTP could differentially regulate osteoblasts and osteoclasts.  相似文献   

9.
Abstract

Insulin resistance is commonly associated with obesity in rodents. Using mice made obese with goldthioglucose (GTG-obese mice), we have shown that insulin resistance results from defects at the level of the receptor and from intracellular alterations in insulin signalling pathway, without major alteration in the number of the Glut 4 glucose transporter. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was found to be profoundly affected in response to insulin. This defect appears very early in the development of obesity, together with a marked decrease in IRS 1 tyrosine phosphorylation. In order to better understand the abnormalities in glucose transport in insulin resistance, we have studied the pathway leading from the insulin receptor kinase stimulation to the translocation of the Glut 4 containing vesicles. This stimulation involves the activation of PI 3-kinase, which in turns activates protein kinase B. We have then focussed at the mechanism of vesicle exocytosis, and more specifically at the role of the small GTPase Rab4 in this process. We have shown that Rab4 participates, first in the intracellular retention of the Glut 4 containing vesicles, second in the insulin signalling pathway leading to glucose transporter translocation.  相似文献   

10.
11.
12.
王炜  来茂德 《遗传》2006,28(2):226-230
    胰岛素受体基因第11号外显子因为变异性剪接而形成两种胰岛素受体,两者与配体胰岛素、胰岛素样生长因子的结合力以及分别诱导的信号传导通路、发挥的生物学效应存在显著差异。这种差异不仅可能是导致胰岛素抵抗、2型糖尿病的重要原因,也会影响肿瘤细胞的生长、增殖、抗凋亡。虽然具体的调节机制尚不明确,但高胰岛素血症及高血糖等代谢因素是影响胰岛素受体变异性剪接的重要原因,同时基因序列敲除试验证实,胰岛素受体基因水平的改变会影响胰岛素受体的变异性剪接。        相似文献   

13.
Abstract

Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains.

Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the NeuTM helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization- competent structure responsible of the proper topology necessary for receptor activation.  相似文献   

14.
在胰岛素结构模体n1-Cys-Gly-X10-Cys-n2-Cys-Cys-X3-Cys-X8-Cys-n3中,有7个绝对保守的氨基酸残基,只有位于B8位的是Gly。通过定点突变将其改变为Ala,得到「B8Ala」人胰岛素,其受体结合能力和体内生物活力分别为天然猪胰岛素的2.5%和10%。「B8Ala」人胰岛素和重组人胰岛素的远紫外圆二色谱比较表明,「B8Ala」人胰岛素的α-螺旋的相对含量有一家  相似文献   

15.
Objectives : Disturbances in insulin signaling have been shown to induce obesity and/or hyperphagia in brain insulin receptor or insulin receptor substrate‐2 (IRS‐2) knockout (KO) mice. This study aimed to examine the central and peripheral mechanisms underlying the phenotype in IRS‐2 KO mice. Research Methods and Procedures : We measured the histological characterization of adipose tissues, mRNA levels of pro‐opiomelanocortin, agouti‐related protein, and neuropeptide Y in the hypothalamus and uncoupling proteins (UCPs) in peripheral tissues of IRS‐2 KO mice. Results : Female IRS‐2 KO mice showed increased daily food intake. Body weight and adiposity were increased in both sexes, although these differences were more pronounced in female than in male IRS‐2 KO mice. Both male and female IRS‐2 KO mice showed decreased UCP1 mRNA expression in brown adipose tissue with defective thermoregulation, and UCP2 mRNA expression was increased in the white adipose tissue of female knockout mice. Furthermore, arcuate nucleus mRNA expression of pro‐opiomelanocortin, was decreased in both male and female IRS‐2 KO mice, whereas expression of agouti‐related protein and neuropeptide Y were increased in female IRS‐2 KO mice. Discussion : In IRS‐2 KO mice, disrupted control of hypothalamic neuropeptide levels and UCP mRNA expression may contribute to the development of obesity.  相似文献   

16.
Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity‐dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsynaptic KARs via endocytosis and degradation. In contrast, low‐level activation augments postsynaptic KAR surface expression. Here, we show that this increase in KARs is due to enhanced recycling via the recruitment of Rab11‐dependent, transferrin‐positive endosomes into spines. Dominant‐negative Rab11 or the recycling inhibitor primaquine prevents the kainate‐evoked increase in surface KARs. Moreover, we show that the increase in surface expression is mediated via a metabotropic KAR signalling pathway, which is blocked by the protein kinase C inhibitor chelerythrine, the calcium chelator BAPTA and the G‐protein inhibitor pertussis toxin. Thus, we report a previously uncharacterized positive feedback system that increases postsynaptic KARs in response to low‐ or moderate‐level agonist activation and can provide additional flexibility to synaptic regulation.   相似文献   

17.
PHIP是一种与胰腺β细胞中胰岛素受体底物(IRS)的PH结构域相互作用的蛋白。根据小鼠PHIP(mPHIP)mRNA翻译的不同起始位点,除全长的PHIP1外,mPHIP基因还编码其他3种不同变异体。在胰岛素诱导的信号途径中,主要分布于细胞核的PHIP1和IRS-1的PH结构域相互作用,介导IRS蛋白酪氨酸的磷酸化。IRS-2和PHIP1的共表达能诱导IRS在细胞膜上的定位,促进葡萄糖转运蛋白4(GLUT4)向细胞质膜的转移。PHIP1的表达能提高β-细胞内细胞周期蛋白D2的表达,促进β细胞的生长。PHIP1的表达活化蛋白激酶B(PKB),活化的PKB能明显抑制β细胞的凋亡。PHIP与胰岛素信号传导途径中其他信号分子的相互作用机制尚不明确。  相似文献   

18.
Adiponectin and its receptors have been demonstrated to play important roles in regulating glucose and lipid metabolism in mice. Obesity, type II diabetes and cardiovascular disease are highly correlated with down-regulated adiponectin signaling. In this study, we generated mice overexpressing the porcine Adipor1 transgene (pAdipor1) to study its beneficial effects in metabolic syndromes as expressed in diet-induced obesity, hepatosteatosis and insulin resistance. Wild-type (WT) and pAdipor1 transgenic mice were fed ad libitum with a standard chow diet (Chow) or a high-fat/sucrose diet (HFSD) for 24 weeks, beginning at 6 to 7 weeks of age. There were 12 mice per genetic/diet/sex group. When challenged with HFSD to induce obesity, the pAdipor1 transgenic mice resisted development of weight gain, hepatosteatosis and insulin resistance. These mice had lowered plasma adiponectin, triglyceride and glycerol concentrations compared to WT mice. Moreover, we found that (indicated by mRNA levels) fatty acid oxidation was enhanced in skeletal muscle and adipose tissue, and liver lipogenesis was inhibited. The pAdipor1 transgene also restored HFSD-reduced phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose transporter 4 mRNA in the adipose tissues, implying that the increased Pck1 may promote glyceroneogenesis to reduce glucose intolerance and thus activate the flux of glyceride-glycerol to resist diet-induced weight gain in the adipose tissues. Taken together, we demonstrated that pAdipor1 can prevent diet-induced weight gain and insulin resistance. Our findings may provide potential therapeutic strategies for treating metabolic syndromes and obesity, such as treatment with an ADIPOR1 agonist or activation of Adipor1 downstream targets.  相似文献   

19.
本文研究了人肝癌细胞SMMC-7721的胰岛素受体与^125I-胰岛素结合的条件,并比较了衣霉素处理和对照细胞的结合动力学和内吞作用。结果表明:4℃和PH8是研究胰岛素受体与配体结合的较佳条件,当0.1ug/ml衣霉素处理18小时,Scatshard作图分析指出,胰岛素受体的结合容量降低,每个细胞上的受体位点数减少。Hill作图分析说明,胰岛素和受体的亲和力(胰岛素半饱和浓度和表观解离常数)及结合  相似文献   

20.
Objective: To evaluate the effect of plasma leptin, nonsterified fatty acids (NEFAs), and tumor necrosis factor‐receptor 1 (TNFR1) on plasma insulin and insulin‐resistance status in children. Research Methods and Procedures: One thousand thirty‐two children (521 boys and 511 girls) were included in this study. We measured plasma insulin and leptin levels by radioimmunoassay, plasma NEFA levels by enzymatic acyl‐coenzyme A synthase—acyl‐coenzyme A oxidase spectrophotometric methods, and TNFR1 levels by enzyme‐linked immunosorbent assay. We calculated insulin resistance index (IRI) using homeostasis model assessment and calculated insulin‐resistance syndrome summary score (IRS) by adding the quartile ranks from the distribution of systolic blood pressure (BP), serum triglyceride, high‐density lipoprotein‐cholesterol (inverse), and insulin levels. Results: Overweight children had higher BP, plasma leptin, and insulin levels and higher IRI and IRS than normal‐weight children. Plasma leptin and TNFR1 were positively correlated with insulin levels, IRI, and IRS. The correlation coefficients of leptin and TNFR1 in IRI were 0.53 and 0.12, respectively, for boys and 0.25 and 0.18, respectively, for girls. In multivariate regression analyses, TNFR1 was positively associated with insulin level and IRI in girls; NEFA was positively associated only with IRS. Plasma leptin levels were significantly positively associated with insulin levels, IRI, and IRS, even after adjusting for BMI and other potential confounders. Discussion: Overweight children had higher BP, plasma insulin, and leptin levels and adverse insulin‐resistance status than normal‐weight children. Plasma leptin levels, rather than NEFA and TNFR1, may play a significant role in the development of hyperinsulinemia and insulin resistance in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号