首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   

2.
Riboswitches are gene regulation elements in mRNA that function by specifically responding to metabolites. Although the metabolite-bound states of riboswitches have proven amenable to structure determination efforts, knowledge of the structural features of riboswitches in their ligand-free forms and their ligand-response mechanisms giving rise to regulatory control is lacking. Here we explore the ligand-induced folding process of the S-adenosylmethionine type II (SAM-II) riboswitch using chemical and biophysical methods, including NMR and fluorescence spectroscopy, and single-molecule fluorescence imaging. The data reveal that the unliganded SAM-II riboswitch is dynamic in nature, in that its stem-loop element becomes engaged in a pseudoknot fold through base-pairing with nucleosides in the 3' overhang containing the Shine-Dalgarno sequence. Although the pseudoknot structure is highly transient in the absence of its ligand, S-adenosylmethionine (SAM), it becomes conformationally restrained upon ligand recognition, through a conformational capture mechanism. These insights provide a molecular understanding of riboswitch dynamics that shed new light on the mechanism of riboswitch-mediated translational regulation.  相似文献   

3.
4.
5.
Molecular analysis of a synthetic tetracycline-binding riboswitch   总被引:2,自引:1,他引:1  
  相似文献   

6.
F G Wulczyn  R Kahmann 《Cell》1991,65(2):259-269
Translation of the bacteriophage Mu mom gene is positively regulated by the phage Com protein. We report here that purified Com protein specifically stimulates mom gene expression in vitro. Furthermore, Com is shown to bind a site in the mom translational initiation region (TIR) in a sequence-specific manner. In vitro RNA footprint experiments have been used to define the Com-binding site and to study mRNA secondary structure in the mom TIR. Com binding is shown to correlate with a conformational change in the mom TIR both in vivo and in vitro. The role of secondary structure was further examined by testing the effects of mutations in the TIR on translation and stimulation. The results support a model for translational stimulation in which Com binding induces a conformational change in the mom mRNA, thereby enhancing ribosome binding.  相似文献   

7.
The SMK box riboswitch, which represents one of three known classes of S-adenosylmethionine (SAM)-responsive riboswitches, regulates gene expression in bacteria at the level of translation initiation. In contrast to most riboswitches, which contain separate domains responsible for ligand recognition and gene regulation, the ligand-binding and regulatory domains of the SMK box riboswitch are coincident. This property was exploited to allow the first atomic-level characterization of a functionally intact riboswitch in both the ligand-bound state and the ligand-free state. NMR spectroscopy revealed distinct mutually exclusive RNA conformations that are differentially populated in the presence or in the absence of the effector metabolite. Isothermal titration calorimetry and in vivo reporter assay results revealed the thermodynamic and functional consequences of this conformational equilibrium. We present a comprehensive model of the structural, thermodynamic, and functional properties of this compact RNA regulatory element.  相似文献   

8.

Background  

Riboswitches are a type of noncoding RNA that regulate gene expression by switching from one structural conformation to another on ligand binding. The various classes of riboswitches discovered so far are differentiated by the ligand, which on binding induces a conformational switch. Every class of riboswitch is characterized by an aptamer domain, which provides the site for ligand binding, and an expression platform that undergoes conformational change on ligand binding. The sequence and structure of the aptamer domain is highly conserved in riboswitches belonging to the same class. We propose a method for fast and accurate identification of riboswitches using profile Hidden Markov Models (pHMM). Our method exploits the high degree of sequence conservation that characterizes the aptamer domain.  相似文献   

9.
Translation initiation region (TIR) of the rpsA mRNA encoding ribosomal protein S1 is one of the most efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno-element. Its high efficiency is under strong negative autogenous control, a puzzling phenomenon as S1 has no strict sequence specificity. To define sequence and structural elements responsible for translational efficiency and autoregulation of the rpsA mRNA, a series of rpsA'-'lacZ chromosomal fusions bearing various mutations in the rpsA TIR was created and tested for beta-galactosidase activity in the absence and presence of excess S1. These in vivo results, as well as data obtained by in vitro techniques and phylogenetic comparison, allow us to propose a model for the structural and functional organization of the rpsA TIR specific for proteobacteria related to E.coli. According to the model, the high efficiency of translation initiation is provided by a specific fold of the rpsA leader forming a non-contiguous ribosome entry site, which is destroyed upon binding of free S1 when it acts as an autogenous repressor.  相似文献   

10.
Riboswitches are newly discovered regulatory elements which control a wide set of basic metabolic pathways. They consist solely of RNA, sense their ligand in a preformed binding pocket and perform a conformational switch in response to ligand binding resulting in altered gene expression. We have utilized the enormous potential of RNA for molecular sensing and conformational changes to develop novel molecular switches with predetermined structural transitions in response to the binding of a small molecule. To validate these in vivo, we exploit the distance-dependent inhibitory potential of secondary structure elements placed close to the bacterial ribosome binding site. We created a translational control element by combining the theophylline aptamer with a helical communication module for which a ligand-dependent one-nucleotide slipping mechanism had been proposed. This structural element was inserted at a position just interfering with translation in the non ligand-bound form. Addition of the ligand then shifts the inhibitory element to a distance which permits efficient translation. We present here a novel regulatory mechanism in the first rationally designed, in vivo active RNA switch. Its use of a slippage mechanism to control gene expression makes it different from natural riboswitches which are based on sequestration or antitermination.  相似文献   

11.
Many bacterial genes are controlled by metabolite sensing motifs known as riboswitches, normally located in the 5′ un-translated region of their mRNAs. Small molecular metabolites bind to the aptamer domain of riboswitches with amazing specificity, modulating gene regulation in a feedback loop as a result of induced conformational changes in the expression platform. Here, we report the results of molecular dynamics simulation studies of the S-adenosylmethionine (SAM)-II riboswitch that is involved in regulating translation in sulfur metabolic pathways in bacteria. We show that the ensemble of conformations of the unbound form of the SAM-II riboswitch is a loose pseudoknot structure that periodically visits conformations similar to the bound form, and the pseudoknot structure is only fully formed upon binding the metabolite, SAM. The rate of forming contacts in the unbound form that are similar to that in the bound form is fast. Ligand binding to SAM-II alters the curvature and base-pairing of the expression platform that could affect the interaction of the latter with the ribosome.  相似文献   

12.
13.
The translational initiation region (TIR) of the Escherichia coli rpsA gene, which encodes ribosomal protein S1, shows a number of unusual features. It extends far upstream (to position -91) of the initiator AUG, it lacks a canonical Shine-Dalgarno sequence (SD) element, and it can fold into three successive hairpins (I, II, and III) that are essential for high translational activity. Two conserved GGA trinucleotides, present in the loops of hairpins I and II, have been proposed to form a discontinuous SD. Here, we have tested this hypothesis with the "specialized ribosome" approach. Depending upon the constructs used, translation initiation was decreased three- to sevenfold upon changing the conserved GGA to CCU. However, although chemical probing showed that the mutated trinucleotides were accessible, no restoration was observed when the ribosome anti-SD was symmetrically changed from CCUCC to GGAGG. When the same change was introduced in the SD from a conventional TIR as a control, activity was stimulated. This result suggests that the GGA trinucleotides do not form a discontinuous SD. Others hypotheses that may account for their role are discussed. Curiously, we also find that, when expressed at moderate level (30 to 40% of total ribosomes), specialized ribosomes are only twofold disadvantaged over normal ribosomes for the translation of bulk cellular mRNAs. These findings suggest that, under these conditions, the SD-anti-SD interaction plays a significant but not essential role for the synthesis of bulk cellular proteins.  相似文献   

14.
Mg2+ has been shown to modulate the function of riboswitches by facilitating the ligand-riboswitch interactions. The btuB riboswitch from Escherichia coli undergoes a conformational change upon binding to its ligand, coenzyme B12 (adenosyl-cobalamine, AdoCbl), and down-regulates the expression of the B12 transporter protein BtuB in order to control the cellular levels of AdoCbl. Here, we discuss the structural folding attained by the btuB riboswitch from E. coli in response to Mg2+ and how it affects the ligand binding competent conformation of the RNA. The btuB riboswitch notably adopts different conformational states depending upon the concentration of Mg2+. With the help of in-line probing, we show the existence of at least two specific conformations, one being achieved in the complete absence of Mg2+ (or low Mg2+ concentration) and the other appearing above ∼0.5 mM Mg2+. Distinct regions of the riboswitch exhibit different dissociation constants toward Mg2+, indicating a stepwise folding of the btuB RNA. Increasing the Mg2+ concentration drives the transition from one conformation toward the other. The conformational state existing above 0.5 mM Mg2+ defines the binding competent conformation of the btuB riboswitch which can productively interact with the ligand, coenzyme B12, and switch the RNA conformation. Moreover, raising the Mg2+ concentration enhances the ratio of switched RNA in the presence of AdoCbl. The lack of a AdoCbl-induced conformational switch experienced by the btuB riboswitch in the absence of Mg2+ indicates a crucial role played by Mg2+ for defining an active conformation of the riboswitch.  相似文献   

15.
In ribosomal protein S12 mutant or L24 mutant the expression of λN gene was depressed at translational level. To study its mechanism the λN gene region of λN -lacZ gene fusion was trimmed from its 5′ end to 3′ end with DNA exonuclease III (DNA cxoIII) in order to alter the TIR (translational initiation region) and the ding region of λN gene. After DNA sequencing 23 species of different λN-lacZ fused genes were obtained. The β-galactosidase activities of these deletants in ribosomal protein mutant were compared with that in wild type strain. The result indicated that (i) S12 mutant could affect 305 subunit’s binding to the TIR of λN gene messenger and cause the difficulty in forming 30s initiation complex and then decrease the efficiency of translational initiation; (ii) in S12 mutant the coding region of λN gene alw affected the expression λN gene; (iii) in L24 mutant the inhibition of λN gene expression was not related to translational initiation and the 5′ end of the coding region of λN gene, but related to the 3′ end of λN gene.  相似文献   

16.
Riboswitches are RNA elements in mRNA that control gene expression in cis in response to their specific ligands. Because artificial riboswitches make it possible to regulate any gene with an arbitrary molecule, they are expected to function as biosensors, in which the output is easily detectable protein expression. I report herein a fully rational design strategy for artificially constructing novel riboswitches that work in a eukaryotic cell-free translation system (wheat germ extract). In these riboswitches, translation mediated by an internal ribosome entry site (IRES) is promoted only in the presence of a specific ligand (ON), while it is inhibited in the absence of the ligand (OFF). The first rationally designed riboswitch, which is regulated by theophylline, showed a high switching efficiency and dependency on theophylline. In addition, based on the design of the theophylline-dependent riboswitch, other three kinds of riboswitches controlled by FMN, tetracycline, and sulforhodamine B, were constructed only by calculating the ΔG value of one stem-loop structure. The rational design strategy described herein is therefore useful for easily producing various ligand-dependent riboswitches, which are available as biosensors for detecting their ligands.  相似文献   

17.
The journey of a newly synthesized polypeptide starts in the peptidyltransferase center of the ribosome, from where it traverses the exit tunnel. The interior of the ribosome exit tunnel is neither straight nor smooth. How the ribosome dynamics in vivo is influenced by the exit tunnel is poorly understood. Genome-wide ribosome profiling in mammalian cells reveals elevated ribosome density at the start codon and surprisingly the downstream 5th codon position as well. We found that the highly focused ribosomal pausing shortly after initiation is attributed to the geometry of the exit tunnel, as deletion of the loop region from ribosome protein L4 diminishes translational pausing at the 5th codon position. Unexpectedly, the ribosome variant undergoes translational abandonment shortly after initiation, suggesting that there exists an obligatory step between initiation and elongation commitment. We propose that the post-initiation pausing of ribosomes represents an inherent signature of the translation machinery to ensure productive translation.  相似文献   

18.
19.
20.
S5 is a small subunit ribosomal protein (r-protein) linked to the functional center of the 30S ribosomal subunit. In this study we have identified a unique amino acid mutation in Escherichia coli S5 that produces spectinomycin-resistance and cold sensitivity. This mutation significantly alters cell growth, folding of 16S ribosomal RNA, and translational fidelity. While translation initiation is not affected, both +1 and -1 frameshifting and nonsense suppression are greatly enhanced in the mutant strain. Interestingly, this S5 ribosome ambiguity-like mutation is spatially remote from previously identified S5 ribosome ambiguity (ram) mutations. This suggests that the mechanism responsible for ram phenotypes in the novel mutant strain is possibly distinct from those proposed for other known S5 (and S4) ram mutants. This study highlights the importance of S5 in ribosome function and cell physiology, and suggests that translational fidelity can be regulated in multiple ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号