首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro selection is a powerful tool that can be used to understand basic principles of molecular evolution. We used in vitro selection to understand how changes in length and the accumulation of point mutations enable the evolution of functional RNAs. Using RNA populations of various lengths, we performed a series of in vitro experiments to select for ribozymes with RNA ligase activity. We identified a core ribozyme structure that was robust to changes in RNA length, high levels of mutagenesis, and increased selection pressure. Elaboration on this core structure resulted in improved activity which we show is consistent with a larger trend among functional RNAs in which increasing motif size can lead to an exponential improvement in fitness. We conclude that elaboration on conserved core structures is a preferred mechanism in RNA evolution. This conclusion, drawn from selections of RNAs from random sequences, is consistent with proposed evolutionary histories of specific biological RNAs. More generally, our results indicate that modern RNA structures can be used to infer ancestral structures. Our observations also suggest a mechanism by which structural outcomes of early RNA evolution would be largely reproducible even though RNA fitness landscapes consist of disconnected clusters of functional sequences.  相似文献   

2.
Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL+GroES) affects the evolution of green fluorescent protein (GFP). To this end, we subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate Escherichia coli populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new (cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes phenotypic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.  相似文献   

3.
Continuous in vitro evolution methods were used to study the behavior of an evolving population of RNA ligase ribozymes in response to selection pressures involving conditions of extreme pH. The starting population consisted of randomized variants of a ribozyme that had been optimized for activity at pH 8.5. The ribozymes were subjected to repeated rounds of selective amplification under progressively more acidic or more alkaline conditions. The two final evolved populations of ribozymes were able to operate at either pH 5.8 or pH 9.8, respectively. Representative individuals from the two final populations were isolated and characterized. The low-pH ribozyme exhibited a 10-fold increase in catalytic rate at pH 5.8 compared to the starting molecule. The high-pH ribozyme retained its structural integrity and activity at pH 9.8, whereas the starting molecule was denatured under this condition. These findings demonstrate that a population of functional macromolecules can adapt to stringent environmental conditions through the acquisition of relatively few mutations. The results establish continuous in vitro evolution as a useful model system for exploring the evolution of enzymatic function in extreme environments. Present address (Henriette Kühne): Cardinal Health, 2950 Trade Place, San Diego, CA 92126, USA  相似文献   

4.
5.
Fitness landscapes of protein and RNA molecules can be studied experimentally using high-throughput techniques to measure the functional effects of numerous combinations of mutations. The rugged topography of these molecular fitness landscapes is important for understanding and predicting natural and experimental evolution. Mutational effects are also dependent upon environmental conditions, but the effects of environmental changes on fitness landscapes remains poorly understood. Here, we investigate the changes to the fitness landscape of a catalytic RNA molecule while changing a single environmental variable that is critical for RNA structure and function. Using high-throughput sequencing of in vitro selections, we mapped a fitness landscape of the Azoarcus group I ribozyme under eight different concentrations of magnesium ions (1–48 mM MgCl2). The data revealed the magnesium dependence of 16,384 mutational neighbors, and from this, we investigated the magnesium induced changes to the topography of the fitness landscape. The results showed that increasing magnesium concentration improved the relative fitness of sequences at higher mutational distances while also reducing the ruggedness of the mutational trajectories on the landscape. As a result, as magnesium concentration was increased, simulated populations evolved toward higher fitness faster. Curve-fitting of the magnesium dependence of individual ribozymes demonstrated that deep sequencing of in vitro reactions can be used to evaluate the structural stability of thousands of sequences in parallel. Overall, the results highlight how environmental changes that stabilize structures can also alter the ruggedness of fitness landscapes and alter evolutionary processes.  相似文献   

6.
As climate regimes shift in many ecosystems worldwide, evolution may be a critical process allowing persistence in rapidly changing environments. Organisms regularly interact with other species, yet whether climate-mediated evolution can occur in the context of species interactions is not well understood. We tested whether a species interaction could modify evolutionary responses to temperature. We demonstrate that predation pressure by Dipteran larvae (Chaoborus americanus) modified the evolutionary response of a freshwater crustacean (Daphnia pulex) to its thermal environment over approximately seven generations in laboratory conditions. Daphnia kept at 21°C evolved higher population growth rates than those kept at 18°C, but only in those populations that were also reared with predators. Furthermore, predator-mediated selection resulted in the evolution of elevated Daphnia thermal plasticity. This laboratory natural selection experiment demonstrates that biotic interactions can modify evolutionary adaptation to temperature. Understanding the interplay between multiple selective forces can improve predictions of ecological and evolutionary responses of organisms to rapid environmental change.  相似文献   

7.
Translational errors during protein synthesis cause phenotypic mutations that are several orders of magnitude more frequent than DNA mutations. Such phenotypic mutations may affect adaptive evolution through their interactions with DNA mutations. To study how mistranslation may affect the adaptive evolution of evolving proteins, we evolved populations of green fluorescent protein (GFP) in either high-mistranslation or low-mistranslation Escherichia coli hosts. In both hosts, we first evolved GFP under purifying selection for the ancestral phenotype green fluorescence, and then under directional selection toward the new phenotype yellow fluorescence. High-mistranslation populations evolved modestly higher yellow fluorescence during each generation of evolution than low-mistranslation populations. We demonstrate by high-throughput sequencing that elevated mistranslation reduced the accumulation of deleterious DNA mutations under both purifying and directional selection. It did so by amplifying the fitness effects of deleterious DNA mutations through negative epistasis with phenotypic mutations. In contrast, mistranslation did not affect the incidence of beneficial mutations. Our findings show that phenotypic mutations interact epistatically with DNA mutations. By reducing a population’s mutation load, mistranslation can affect an important determinant of evolvability.  相似文献   

8.
In order to explore the variety of possible responses available to a ribozyme population evolving a novel phenotype, five Tetrahymena thermophila group I intron ribozyme pools were evolved in parallel for cleavage of a DNA oligonucleotide. These ribozyme populations were propagated under identical conditions and characterized when they reached apparent phenotypic plateaus; the populations that reached the highest plateau showed a near 100-fold improvement in DNA cleavage activity. A detailed characterization of the evolved response in these populations reveals at least two distinct phenotypic trajectories emerging as a result of the imposed selection. Not only do these distinct solutions exhibit differential DNA cleavage activity, but they also exhibit a very different correlation with a related, but unselected, phenotype: RNA cleavage activity. In turn, each of these trajectories is underwritten by differing genotypic profiles. This study underscores the complex network of possible trajectories through sequence space available to an evolving population and uncovers the diversity of solutions that result when the process of experimental evolution is repeated multiple times in a simple, engineered system.  相似文献   

9.
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.  相似文献   

10.
Soll SJ  Díaz Arenas C  Lehman N 《Genetics》2007,175(1):267-275
The accumulation of slightly deleterious mutations in populations leads to the buildup of a genetic load and can cause the extinction of populations of small size. Mutation-accumulation experiments have been used to study this process in a wide variety of organisms, yet the exact mutational underpinnings of genetic loads and their fitness consequences remain poorly characterized. Here, we use an abiotic system of RNA populations evolving continuously in vitro to examine the molecular events that can instigate a genetic load. By tracking the fitness decline of ligase ribozyme populations with bottleneck sizes between 100 and 3000 molecules, we detected the appearance and subsequent fixation of both slightly deleterious mutations and advantageous mutations. Smaller populations went extinct in significantly fewer generations than did larger ones, supporting the notion of a mutational meltdown. These data suggest that mutation accumulation was an important evolutionary force in the prebiotic RNA world and that mechanisms such as recombination to ameliorate genetic loads may have been in place early in the history of life.  相似文献   

11.
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.  相似文献   

12.
Mitigating trade-offs between different resource-utilization functions is key to an organism’s ecological and evolutionary success. These trade-offs often reflect metabolic constraints with a complex molecular underpinning; therefore, their consequences for evolutionary processes have remained elusive. Here, we investigate how metabolic architecture induces resource-utilization constraints and how these constraints, in turn, elicit evolutionary specialization and diversification. Guided by the metabolic network structure of the bacterium Lactococcus cremoris, we selected two carbon sources (fructose and galactose) with predicted coutilization constraints. By evolving L. cremoris on either fructose, galactose, or a mix of both sugars, we imposed selection favoring divergent metabolic specializations or coutilization of both resources, respectively. Phenotypic characterization revealed the evolution of either fructose or galactose specialists in the single-sugar treatments. In the mixed-sugar regime, we observed adaptive diversification: both specialists coexisted, and no generalist evolved. Divergence from the ancestral phenotype occurred at key pathway junctions in the central carbon metabolism. Fructose specialists evolved mutations in the fbp and pfk genes that appear to balance anabolic and catabolic carbon fluxes. Galactose specialists evolved increased expression of pgmA (the primary metabolic bottleneck of galactose metabolism) and silencing of ptnABCD (the main glucose transporter) and ldh (regulator/enzyme of downstream carbon metabolism). Overall, our study shows how metabolic network architecture and historical contingency serve to predict targets of selection and inform the functional interpretation of evolved mutations. The elucidation of the relationship between molecular constraints and phenotypic trade-offs contributes to an integrative understanding of evolutionary specialization and diversification.  相似文献   

13.
The evolution of host resistance to parasites, shaped by associated fitness costs, is crucial for epidemiology and maintenance of genetic diversity. Selection imposed by multiple parasites could be a particularly strong constraint, as hosts either accumulate costs of multiple specific resistances or evolve a more costly general resistance mechanism. We used experimental evolution to test how parasite heterogeneity influences the evolution of host resistance. We show that bacterial host populations evolved specific resistance to local bacteriophage parasites, regardless of whether they were in single or multiple-phage environments, and that hosts evolving with multiple phages were no more resistant to novel phages than those evolving with single phages. However, hosts from multiple-phage environments paid a higher cost, in terms of population growth in the absence of phage, for their evolved specific resistances than those from single-phage environments. Given that in nature host populations face selection pressures from multiple parasite strains and species, our results suggest that costs may be even more critical in shaping the evolution of resistance than previously thought. Furthermore, our results highlight that a better understanding of resistance costs under combined control strategies could lead to a more 'evolution-resistant' treatment of disease.  相似文献   

14.
Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.  相似文献   

15.
A major goal in evolutionary biology is to understand the origins and fates of adaptive mutations. Natural selection may act to increase the frequency of de novo beneficial mutations, or those already present in the population as standing genetic variation. These beneficial mutations may ultimately reach fixation in a population, or they may stop increasing in frequency once a particular phenotypic state has been achieved. It is not yet well understood how different features of population biology, and/or different environmental circumstances affect these adaptive processes. Experimental evolution is a promising technique for studying the dynamics of beneficial alleles, as populations evolving in the laboratory experience natural selection in a replicated, controlled manner. Whole-genome sequencing, regularly obtained over the course of sustained laboratory selection, could potentially reveal insights into the mutational dynamics that most likely occur in natural populations under similar circumstances. To date, only a few evolution experiments for which whole-genome data are available exist. This review describes results from these resequenced laboratory-selected populations, in systems with and without sexual recombination. In asexual systems, adaptation from new mutations can be studied, and results to date suggest that the complete, unimpeded fixation of these mutations is not always observed. In sexual systems, adaptation from standing genetic variation can be studied, and in the admittedly few examples we have, the complete fixation of standing variants is not always observed. To date, the relative frequency of adaptation from new mutations versus standing variation has not been tested using a single experimental system, but recent studies using Caenorhabditis elegans and Saccharomyces cerevisiae suggest that this a realistic future goal.  相似文献   

16.
Background: Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. Results: Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. Conclusions: In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.  相似文献   

17.
Catalytic RNAs are attractive objects for studying molecular evolution. To understand how RNA libraries can evolve from randomness toward highly active catalysts, we analyze the original samples that led to the discovery of Diels–Alderase ribozymes by next-generation sequencing. Known structure-activity relationships are used to correlate abundance with catalytic performance. We find that efficient catalysts arose not just from selection for reactivity among the members of the starting library, but from improvement of less potent precursors by mutations. We observe changes in the ribozyme population in response to increasing selection pressure. Surprisingly, even after many rounds of enrichment, the libraries are highly diverse, suggesting that potential catalysts are more abundant in random space than generally thought. To highlight the use of next-generation sequencing as a tool for in vitro selections, we also apply this technique to a recent, less characterized ribozyme selection. Making use of the correlation between sequence evolution and catalytic activity, we predict mutations that improve ribozyme activity and validate them biochemically. Our study reveals principles underlying ribozyme in vitro selections and provides guidelines to render future selections more efficient, as well as to predict the conservation of key structural elements, allowing the rational improvement of catalysts.  相似文献   

18.
Although increased disease severity driven by intensive farming practices is problematic in food production, the role of evolutionary change in disease is not well understood in these environments. Experiments on parasite evolution are traditionally conducted using laboratory models, often unrelated to economically important systems. We compared how the virulence, growth and competitive ability of a globally important fish pathogen, Flavobacterium columnare, change under intensive aquaculture. We characterized bacterial isolates from disease outbreaks at fish farms during 2003–2010, and compared F. columnare populations in inlet water and outlet water of a fish farm during the 2010 outbreak. Our data suggest that the farming environment may select for bacterial strains that have high virulence at both long and short time scales, and it seems that these strains have also evolved increased ability for interference competition. Our results are consistent with the suggestion that selection pressures at fish farms can cause rapid changes in pathogen populations, which are likely to have long-lasting evolutionary effects on pathogen virulence. A better understanding of these evolutionary effects will be vital in prevention and control of disease outbreaks to secure food production.  相似文献   

19.
Life-history theory predicts that traits for survival and reproduction cannot be simultaneously maximized in evolving populations. For this reason, in obligate parasites such as infectious viruses, selection for improved between-host survival during transmission may lead to evolution of decreased within-host reproduction. We tested this idea using experimental evolution of RNA virus populations, passaged under differing transmission times in the laboratory. A single ancestral genotype of vesicular stomatitis virus (VSV), a negative-sense RNA Rhabdovirus, was used to found multiple virus lineages evolved in either ordinary 24-h cell-culture passage, or in delayed passages of 48 h. After 30 passages (120 generations of viral evolution), we observed that delayed transmission selected for improved extracellular survival, which traded-off with lowered viral fecundity (slower exponential population growth and smaller mean plaque size). To further examine the confirmed evolutionary trade-off, we obtained consensus whole-genome sequences of evolved virus populations, to infer phenotype–genotype associations. Results implied that increased virus survival did not occur via convergence; rather, improved virion stability was gained via independent mutations in various VSV structural proteins. Our study suggests that RNA viruses can evolve different molecular solutions for enhanced survival despite their limited genetic architecture, but suffer generalized reproductive trade-offs that limit overall fitness gains.  相似文献   

20.
Protein engineers can alter the properties of enzymes by directing their evolution in vitro. Many methods to generate molecular diversity and to identify improved clones have been developed, but experimental evolution remains as much an art as a science. We previously used DNA shuffling (sexual recombination) and a histochemical screen to direct the evolution of Escherichia coli beta-glucuronidase (GUS) variants with improved beta-galactosidase (BGAL) activity. Here, we employ the same model evolutionary system to test the efficiencies of several other techniques: recursive random mutagenesis (asexual), combinatorial cassette mutagenesis (high-frequency recombination) and a versatile high-throughput microplate screen. GUS variants with altered specificity evolved in each trial, but different combinations of mutagenesis and screening techniques effected the fixation of different beneficial mutations. The new microplate screen identified a broader set of mutations than the previously employed X-gal colony screen. Recursive random mutagenesis produced essentially asexual populations, within which beneficial mutations drove each other into extinction (clonal interference); DNA shuffling and combinatorial cassette mutagenesis led instead to the accumulation of beneficial mutations within a single allele. These results explain why recombinational approaches generally increase the efficiency of laboratory evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号