首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bahadur RP  Janin J 《Proteins》2008,71(1):407-414
To evaluate the evolutionary constraints placed on viral proteins by the structure and assembly of the capsid, we calculate Shannon entropies in the aligned sequences of 45 polypeptide chains in 32 icosahedral viruses, and relate these entropies to the residue location in the three-dimensional structure of the capsids. Three categories of residues have entropies lower than the chain average implying that they are better conserved than average: residues that are buried within a subunit (the protein core), residues that contain atoms buried at an interface between subunits (the interface core), and residues that contribute to several such interfaces. The interface core is also conserved in homomeric proteins and in transient protein-protein complexes, which have only one interface whereas capsids have many. In capsids, the subunit interfaces implicate most of the polypeptide chain: on average, 66% of the capsid residues are at an interface, 34% at more than one, and 47% at the interface core. Nevertheless, we observe that the degree of residue conservation can vary widely between interfaces within a capsid and between regions within an interface. The interfaces and regions of interfaces that show a low sequence variability are likely to play major roles in the self-assembly of the capsid, with implications on its mechanism that we discuss taking adeno-associated virus as an example.  相似文献   

2.
Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3‐D structures of homologous transient PPCs, that the 3‐D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter‐residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.  相似文献   

3.
Protein–protein interactions are essential to all aspects of life. Specific interactions result from evolutionary pressure at the interacting interfaces of partner proteins. However, evolutionary pressure is not homogeneous within the interface: for instance, each residue does not contribute equally to the binding energy of the complex. To understand functional differences between residues within the interface, we analyzed their properties in the core and rim regions. Here, we characterized protein interfaces with two evolutionary measures, conservation and coevolution, using a comprehensive dataset of 896 protein complexes. These scores can detect different selection pressures at a given position in a multiple sequence alignment. We also analyzed how the number of interactions in which a residue is involved influences those evolutionary signals. We found that the coevolutionary signal is higher in the interface core than in the interface rim region. Additionally, the difference in coevolution between core and rim regions is comparable to the known difference in conservation between those regions. Considering proteins with multiple interactions, we found that conservation and coevolution increase with the number of different interfaces in which a residue is involved, suggesting that more constraints (i.e., a residue that must satisfy a greater number of interactions) allow fewer sequence changes at those positions, resulting in higher conservation and coevolution values. These findings shed light on the evolution of protein interfaces and provide information useful for identifying protein interfaces and predicting protein–protein interactions.  相似文献   

4.
Protein-protein interactions play an essential role in the functioning of cell. The importance of charged residues and their diverse role in protein-protein interactions have been well studied using experimental and computational methods. Often, charged residues located in protein interaction interfaces are conserved across the families of homologous proteins and protein complexes. However, on a large scale, it has been recently shown that charged residues are significantly less conserved than other residue types in protein interaction interfaces. The goal of this work is to understand the role of charged residues in the protein interaction interfaces through their conservation patterns. Here, we propose a simple approach where the structural conservation of the charged residue pairs is analyzed among the pairs of homologous binary complexes. Specifically, we determine a large set of homologous interactions using an interaction interface similarity measure and catalog the basic types of conservation patterns among the charged residue pairs. We find an unexpected conservation pattern, which we call the correlated reappearance, occurring among the pairs of homologous interfaces more frequently than the fully conserved pairs of charged residues. Furthermore, the analysis of the conservation patterns across different superkingdoms as well as structural classes of proteins has revealed that the correlated reappearance of charged residues is by far the most prevalent conservation pattern, often occurring more frequently than the unconserved charged residues. We discuss a possible role that the new conservation pattern may play in the long-range electrostatic steering effect.  相似文献   

5.
Protein interfaces are thought to be distinguishable from the rest of the protein surface by their greater degree of residue conservation. We test the validity of this approach on an expanded set of 64 protein-protein interfaces using conservation scores derived from two multiple sequence alignment types, one of close homologs/orthologs and one of diverse homologs/paralogs. Overall, we find that the interface is slightly more conserved than the rest of the protein surface when using either alignment type, with alignments of diverse homologs showing marginally better discrimination. However, using a novel surface-patch definition, we find that the interface is rarely significantly more conserved than other surface patches when using either alignment type. When an interface is among the most conserved surface patches, it tends to be part of an enzyme active site. The most conserved surface patch overlaps with 39% (+/- 28%) and 36% (+/- 28%) of the actual interface for diverse and close homologs, respectively. Contrary to results obtained from smaller data sets, this work indicates that residue conservation is rarely sufficient for complete and accurate prediction of protein interfaces. Finally, we find that obligate interfaces differ from transient interfaces in that the former have significantly fewer alignment gaps at the interface than the rest of the protein surface, as well as having buried interface residues that are more conserved than partially buried interface residues.  相似文献   

6.
Biogenesis of β-barrel membrane proteins is a complex, multistep, and as yet incompletely characterized process. The bacterial porin family is perhaps the best-studied protein family among β-barrel membrane proteins that allows diffusion of small solutes across the bacterial outer membrane. In this study, we have identified residues that contribute significantly to the protein-protein interaction (PPI) interface between the chains of outer membrane protein F (OmpF), a trimeric porin, using an empirical energy function in conjunction with an evolutionary analysis. By replacing these residues through site-directed mutagenesis either with energetically favorable residues or substitutions that do not occur in natural bacterial outer membrane proteins, we succeeded in engineering OmpF mutants with dimeric and monomeric oligomerization states instead of a trimeric oligomerization state. Moreover, our results suggest that the oligomerization of OmpF proceeds through a series of interactions involving two distinct regions of the extensive PPI interface: two monomers interact to form a dimer through the PPI interface near G19. This dimer then interacts with another monomer through the PPI interface near G135 to form a trimer. We have found that perturbing the PPI interface near G19 results in the formation of the monomeric OmpF only. Thermal denaturation of the designed dimeric OmpF mutant suggests that oligomer dissociation can be separated from the process of protein unfolding. Furthermore, the conserved site near G57 and G59 is important for the PPI interface and might provide the essential scaffold for PPIs.  相似文献   

7.
Water molecules play an important role in protein folding and protein interactions through their structural association with proteins. Examples of such structural association can be found in protein crystal structures, and can often explain protein functionality in the context of structure. We herein report the systematic analysis of the local structures of proteins interacting with water molecules, and the characterization of their geometric features. We first examined the interaction of water molecules with a large local interaction environment by comparing the preference of water molecules in three regions, namely, the protein–protein interaction (PPI) interfaces, the crystal contact (CC) interfaces, and the non‐interfacial regions. High preference of water molecules to the PPI and CC interfaces was found. In addition, the bound water on the PPI interface was more favorably associated with the complex interaction structure, implying that such water‐mediated structures may participate in the shaping of the PPI interface. The pairwise water‐mediated interaction was then investigated, and the water‐mediated residue–residue interaction potential was derived. Subsequently, the types of polar atoms surrounding the water molecules were analyzed, and the preference of the hydrogen bond acceptor was observed. Furthermore, the geometries of the structures interacting with water were analyzed, and it was found that the major structure on the protein surface exhibited planar geometry rather than tetrahedral geometry. Several previously undiscovered characteristics of water–protein interactions were unfolded in this study, and are expected to lead to a better understanding of protein structure and function. Proteins 2016; 84:43–51. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Hafumi Nishi  Motonori Ota 《Proteins》2010,78(6):1563-1574
Despite similarities in their sequence and structure, there are a number of homologous proteins that adopt various oligomeric states. Comparisons of these homologous protein pairs, in terms of residue substitutions at the protein–protein interfaces, have provided fundamental characteristics that describe how proteins interact with each other. We have prepared a dataset composed of pairs of related proteins with different homo‐oligomeric states. Using the protein complexes, the interface residues were identified, and using structural alignments, the shadow‐interface residues have been defined as the surface residues that align with the interface residues. Subsequently, we investigated residue substitutions between the interfaces and the shadow interfaces. Based on the degree of the contributions to the interactions, the aligned sites of the interfaces and shadow interfaces were divided into primary and secondary sites; the primary sites are the focus of this work. The primary sites were further classified into two groups (i.e. exposed and buried) based on the degree to which the residue is buried within the shadow interfaces. Using these classifications, two simple mechanisms that mediate the oligomeric states were identified. In the primary‐exposed sites, the residues on the shadow interfaces are replaced by more hydrophobic or aromatic residues, which are physicochemically favored at protein–protein interfaces. In the primary‐buried sites, the residues on the shadow interfaces are replaced by larger residues that protrude into other proteins. These simple rules are satisfied in 23 out of 25 Structural Classification of Proteins (SCOP) families with a different‐oligomeric‐state pair, and thus represent a basic strategy for modulating protein associations and dissociations. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Shih CH  Chang CM  Lin YS  Lo WC  Hwang JK 《Proteins》2012,80(6):1647-1657
The knowledge of conserved sequences in proteins is valuable in identifying functionally or structurally important residues. Generating the conservation profile of a sequence requires aligning families of homologous sequences and having knowledge of their evolutionary relationships. Here, we report that the conservation profile at the residue level can be quantitatively derived from a single protein structure with only backbone information. We found that the reciprocal packing density profiles of protein structures closely resemble their sequence conservation profiles. For a set of 554 nonhomologous enzymes, 74% (408/554) of the proteins have a correlation coefficient > 0.5 between these two profiles. Our results indicate that the three-dimensional structure, instead of being a mere scaffold for positioning amino acid residues, exerts such strong evolutionary constraints on the residues of the protein that its profile of sequence conservation essentially reflects that of its structural characteristics.  相似文献   

11.
The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained.  相似文献   

12.
Shukla A  Guptasarma P 《Proteins》2004,57(3):548-557
We show that residues at the interfaces of protein-protein complexes have higher side-chain energy than other surface residues. Eight different sets of protein complexes were analyzed. For each protein pair, the complex structure was used to identify the interface residues in the unbound monomer structures. Side-chain energy was calculated for each surface residue in the unbound monomer using our previously developed scoring function.1 The mean energy was calculated for the interface residues and the other surface residues. In 15 of the 16 monomers, the mean energy of the interface residues was higher than that of other surface residues. By decomposing the scoring function, we found that the energy term of the buried surface area of non-hydrogen-bonded hydrophilic atoms is the most important factor contributing to the high energy of the interface regions. In spite of lacking hydrophilic residues, the interface regions were found to be rich in buried non-hydrogen-bonded hydrophilic atoms. Although the calculation results could be affected by the inaccuracy of the scoring function, patch analysis of side-chain energy on the surface of an isolated protein may be helpful in identifying the possible protein-protein interface. A patch was defined as 20 residues surrounding the central residue on the protein surface, and patch energy was calculated as the mean value of the side-chain energy of all residues in the patch. In 12 of the studied monomers, the patch with the highest energy overlaps with the observed interface. The results are more remarkable when only three residues with the highest energy in a patch are averaged to derive the patch energy. All three highest-energy residues of the top energy patch belong to interfacial residues in four of the eight small protomers. We also found that the residue with the highest energy score on the surface of a small protomer is very possibly the key interaction residue.  相似文献   

13.
In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein–protein interactions (PPIs) – for example with reader proteins that directly bind the modified amino acid residue – which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.  相似文献   

14.
Gene duplication is a common evolutionary process that leads to the expansion and functional diversification of protein subfamilies. The evolutionary events that cause paralogous proteins to bind different protein ligands (functionally diverged interfaces) are investigated and compared to paralogous proteins that bind the same protein ligand (functionally preserved interfaces). We find that functionally diverged interfaces possess more subfamily-specific residues than functionally preserved interfaces. These subfamily-specific residues are usually partially buried at the interface rim and achieve specific binding through optimized hydrogen bond geometries. In addition to optimized hydrogen bond geometries, side-chain modeling experiments suggest that steric effects are also important for binding specificity. Residues that are completely buried at the interface hub are also less conserved in functionally diverged interfaces than in functionally preserved interfaces. Consistent with this finding, hub residues contribute less to free energy of binding in functionally diverged interfaces than in functionally preserved interfaces. Therefore, we propose that protein binding is a delicate balance between binding affinity that primarily occurs at the interface hub and binding specificity that primarily occurs at the interface rim.  相似文献   

15.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

16.
The long-standing problem of constructing protein structure alignments is of central importance in computational biology. The main goal is to provide an alignment of residue correspondences, in order to identify homologous residues across chains. A critical next step of this is the alignment of protein complexes and their interfaces. Here, we introduce the program CMAPi, a two-dimensional dynamic programming algorithm that, given a pair of protein complexes, optimally aligns the contact maps of their interfaces: it produces polynomial-time near-optimal alignments in the case of multiple complexes. We demonstrate the efficacy of our algorithm on complexes from PPI families listed in the SCOPPI database and from highly divergent cytokine families. In comparison to existing techniques, CMAPi generates more accurate alignments of interacting residues within families of interacting proteins, especially for sequences with low similarity. While previous methods that use an all-atom based representation of the interface have been successful, CMAPi's use of a contact map representation allows it to be more tolerant to conformational changes and thus to align more of the interaction surface. These improved interface alignments should enhance homology modeling and threading methods for predicting PPIs by providing a basis for generating template profiles for sequence-structure alignment.  相似文献   

17.
The most conspicuous structural characteristic of the alpha-helical membrane proteins is their long transmembrane alpha-helices. However, other structural elements, as yet largely ignored in statistical studies of membrane protein structure, are found in those parts of the protein that are located in the membrane-water interface region. Here, we show that this region is enriched in irregular structure and in interfacial helices running roughly parallel with the membrane surface, while beta-strands are extremely rare. The average amino acid composition is different between the interfacial helices, the parts of the transmembrane helices located in the interface region, and the irregular structures. In this region, hydrophobic and aromatic residues tend to point toward the membrane and charged/polar residues tend to point away from the membrane. The interface region thus imposes different constraints on protein structure than do the central hydrocarbon core of the membrane and the surrounding aqueous phase.  相似文献   

18.
Protein–protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure–function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions.  相似文献   

19.
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.  相似文献   

20.
Jiménez JL 《Proteins》2005,59(4):757-764
To understand the evolutionary forces establishing, maintaining, breaking, or precluding protein-protein interactions, a comprehensive data set of protein complexes has been analyzed to examine the overlap between protein interfaces and the most conserved or divergent protein surface areas. The most divergent areas tend to be found predominantly away from protein interfaces, although when found at interfaces, they are associated with specific lack of cross-reactivity between close homologues, like in antibody-antigen complexes. Moreover, the amino acid composition of highly variable regions is significantly different from any other protein surfaces. The variable regions present higher structural plasticity as a result of insertions and deletions, and favor charged over hydrophobic residues, a known strategy to minimize aggregation. This suggests that (1) a rapid rate of mutations at these regions might be continuously altering their properties, making difficult the coadaptation, in shape and chemical complementarity, to potential interacting partners; and (2) the existence of some form of selective pressure for variable areas away from interfaces to accumulate charged residues, perhaps as an evolutionary mechanism to increase solubility and minimize undesirable interactions within the crowded cellular environment. Finally, these results are placed into the context of the aberrant oligomerization of sickle-cell anemia hemoglobin and prion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号