首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The East Continental Shelf (ECS) of Brazil is a hotspot of endemism and biodiversity of reef biota in the South Atlantic, hosting a number of Marine Protected Areas (MPAs). Connectivity of MPAs through larval dispersal influences recruitment, population dynamics, genetic structure and biogeography in coral reef ecosystems. Connectivity of protected reef ecosystem in the ECS was investigated with a hydrodynamic model (ROMS) forcing an Individual Based Model (IBM—Ichthyop), and used groupers (genus Mycteroperca) as functional group. The hydrodynamic output from ROMS was compared with satellite data and showed good agreement with observed surface fields. Eggs were released, in IBM experiments, from April to September along six years (2002–2007) in five MPAs along the ECS. Intrannual variability in recruitment and self-recruitment of grouper larvae was observed, as well as a negative correlation of these population parameters with total Kinetic Energy (KE) used as a metric of the physical environment. Higher KE leads to increased offshore advection of larvae, reduced total recruitment and connectivity of MPAs. Our results indicate high and uni-directional connectivity between MPAs from north to south influenced by the Brazil Current flowing in the same direction. Results also showed that some MPAs act predominantly as “sink” while others are mainly “source” areas.  相似文献   

2.
Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.  相似文献   

3.
The distribution of a group of fish and macroinvertebrates (n = 52) resident in the US Northeast Shelf large marine ecosystem were characterized with species distribution models (SDM), which in turn were used to estimate occurrence and biomass center of gravity (COG). The SDMs were fit using random forest machine learning and were informed with a range of physical and biological variables. The estimated probability of occurrence and biomass from the models provided the weightings to determine depth, distance to the coast, and along‐shelf distance COG. The COGs of occupancy and biomass habitat tended to be separated by distances averaging 50 km, which approximates half of the minor axis of the subject ecosystem. During the study period (1978–2018), the biomass COG has tended to shift to further offshore positions whereas occupancy habitat has stayed at a regular spacing from the coastline. Both habitat types have shifted their along‐shelf distances, indicating a general movement to higher latitude or to the Northeast for this ecosystem. However, biomass tended to occur at lower latitudes in the spring and higher latitude in the fall in a response to seasonal conditions. Distribution of habitat in relation to depth reveals a divergence in response with occupancy habitat shallowing over time and biomass habitat distributing in progressively deeper water. These results suggest that climate forced change in distribution will differentially affect occurrence and biomass of marine taxa, which will likely affect the organization of ecosystems and the manner in which human populations utilize marine resources.  相似文献   

4.
Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200–1100 m and 1100–1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic’s deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200–1100 m and 1100–1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic.  相似文献   

5.
Marine protected areas (MPAs) are major tools to protect biodiversity and sustain fisheries. For species with a sedentary adult phase and a dispersive larval phase, the effectiveness of MPA networks for population persistence depends on connectivity through larval dispersal. However, connectivity patterns between MPAs remain largely unknown at large spatial scales. Here, we used a biophysical model to evaluate connectivity between MPAs in the Mediterranean Sea, a region of extremely rich biodiversity that is currently protected by a system of approximately a hundred MPAs. The model was parameterized according to the dispersal capacity of the dusky grouper Epinephelus marginatus, an archetypal conservation-dependent species, with high economic importance and emblematic in the Mediterranean. Using various connectivity metrics and graph theory, we showed that Mediterranean MPAs are far from constituting a true, well-connected network. On average, each MPA was directly connected to four others and MPAs were clustered into several groups. Two MPAs (one in the Balearic Islands and one in Sardinia) emerged as crucial nodes for ensuring multi-generational connectivity. The high heterogeneity of MPA distribution, with low density in the South-Eastern Mediterranean, coupled with a mean dispersal distance of 120 km, leaves about 20% of the continental shelf without any larval supply. This low connectivity, here demonstrated for a major Mediterranean species, poses new challenges for the creation of a future Mediterranean network of well-connected MPAs providing recruitment to the whole continental shelf. This issue is even more critical given that the expected reduction of pelagic larval duration following sea temperature rise will likely decrease connectivity even more.  相似文献   

6.
Understanding seabird habitat preferences is critical to future wildlife conservation and threat mitigation in California. The objective of this study was to investigate drivers of seabird habitat selection within the Gulf of the Farallones and Cordell Bank National Marine Sanctuaries to identify areas for targeted conservation planning. We used seabird abundance data collected by the Applied California Current Ecosystem Studies Program (ACCESS) from 2004–2011. We used zero-inflated negative binomial regression to model species abundance and distribution as a function of near surface ocean water properties, distances to geographic features and oceanographic climate indices to identify patterns in foraging habitat selection. We evaluated seasonal, inter-annual and species-specific variability of at-sea distributions for the five most abundant seabirds nesting on the Farallon Islands: western gull (Larus occidentalis), common murre (Uria aalge), Cassin’s auklet (Ptychorampus aleuticus), rhinoceros auklet (Cerorhinca monocerata) and Brandt’s cormorant (Phalacrocorax penicillatus). The waters in the vicinity of Cordell Bank and the continental shelf east of the Farallon Islands emerged as persistent and highly selected foraging areas across all species. Further, we conducted a spatial prioritization exercise to optimize seabird conservation areas with and without considering impacts of current human activities. We explored three conservation scenarios where 10, 30 and 50 percent of highly selected, species-specific foraging areas would be conserved. We compared and contrasted results in relation to existing marine protected areas (MPAs) and the future alternative energy footprint identified by the California Ocean Uses Atlas. Our results show that the majority of highly selected seabird habitat lies outside of state MPAs where threats from shipping, oil spills, and offshore energy development remain. This analysis accentuates the need for innovative marine spatial planning efforts and provides a foundation on which to build more comprehensive zoning and management in California’s National Marine Sanctuaries.  相似文献   

7.
Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = −0.133, P < 0.05), and the temperature range preferred by giant pandas within the study area was 18–21°C, followed by 15–17°C and 22–24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm2 (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm2 (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.  相似文献   

8.
Watercraft pose a threat to endangered Florida manatees (Trichechus manatus latirostris). Mortality from watercraft collisions has adversely impacted the manatee population’s growth rate, therefore reducing this threat is an important management goal. To assess factors that contribute to the risk of watercraft strikes to manatees, we studied the diving behavior of nine manatees carrying GPS tags and time–depth recorders in Tampa Bay, Florida, during winters 2002–2006. We applied a Bayesian formulation of generalized linear mixed models to depth data to model the probability (Pt) that manatees would be no deeper than 1.25 m from the water’s surface as a function of behavioral and habitat covariates. Manatees above this threshold were considered to be within striking depth of a watercraft. Seventy-eight percent of depth records (individual range 62–86%) were within striking depth (mean = 1.09 m, max = 16.20 m), illustrating how vulnerable manatees are to strikes. In some circumstances manatees made consecutive dives to the bottom while traveling, even in areas >14 m, possibly to conserve energy. This is the first documentation of potential cost-efficient diving behavior in manatees. Manatees were at higher risk of being within striking depth in shallow water (<0.91 m), over seagrass, at night, and while stationary or moving slowly; they were less likely to be within striking depth when ≤50 m from a charted waterway. In shallow water the probability of a manatee being within striking depth was 0.96 (CI = 0.93–0.98) and decreased as water depth increased. The probability was greater over seagrass (Pt = 0.96, CI = 0.93–0.98) than over other substrates (Pt = 0.73, CI = 0.58–0.84). Quantitative approaches to assessing risk can improve the effectiveness of manatee conservation measures by helping identify areas for protection.  相似文献   

9.
In this article, we consider the potential effects of anthropogenic disturbances on marine fish species known or suspected to be habitat engineers. The three species of interest inhabit different marine habitats at different life stages, and therefore can have significant influences across the sea floor at broad spatial scales. The primary species include the shallow-water Atlantic goliath grouper (Epinephelus itajara), which inhabits mangrove root systems as juveniles, and caves, shipwrecks, and rocky reefs as adults; red grouper (E. morio), which excavates habitat throughout its benthic life in Karst regions of the Gulf of Mexico and western Atlantic, from the coast to the shelf-edge; and tilefish (Lopholatilus chamaeleonticeps), a species that lives on the continental slope and constructs elaborate, pueblo-esque burrows. The anthropogenic disturbances of greatest interest in the Gulf of Mexico include fishing, hypoxia, red tide, oil and gas exploration, and climatic change. We suggest that to understand the broader effects of both natural and anthropogenic disturbances on biomass and productivity in these species requires that we first understand the strength of interactions between them and the other species residing within their communities (e.g., predators, prey, commensals, and mutualists).  相似文献   

10.
The Grain for Green Program (GGP) is the largest afforestation and reforestation project in China in the early part of this century. To assess carbon sequestration in stands under the GGP in Southwest China, the carbon stocks and their annual changes in the GGP stands in the region were estimated based on the following information: (1) collected data on the annually planted area of each tree species under the GGP in Southwest China from 1999 to 2010; (2) development of empirical growth curves and corresponding carbon estimation models for each species growing in the GPP stands; and (3) parameters associated with the stands such as wood density, biomass expansion factor, carbon fraction and the change rate of soil organic carbon content. Two forest management scenarios were examined: scenario A, with no harvesting, and scenario B, with logging at the customary rotation followed by replanting. The results showed that by the years 2020, 2030, 2040, 2050 and 2060, the expected carbon storage of the GGP stands in Southwest China is 139.58 TgC, 177.50–207.55 TgC, 196.86–259.65 TgC, 240.45–290.62 TgC and 203.22–310.03 TgC (T = 1012), respectively. For the same years, the expected annual change in carbon stocks is 7.96 TgCyr−1, −7.95–5.95 TgCyr−1, −0.10–4.67 TgCyr−1, 4.31–2.24 TgCyr−1 and −0.02–1.75 TgCyr−1, respectively. This indicates that the stands significantly contribute to forest carbon sinks in this region. In 2060, the estimated carbon stocks in the seven major species of GGP stands in Southwest China are 4.16–13.01 TgC for Pinus armandii, 6.30–15.01 TgC for Pinus massoniana, 11.51–13.44 TgC for Cryptomeria fortunei, 15.94–24.13 TgC for Cunninghamia lanceolata, 28.05 TgC for Cupressus spp., 5.32–15.63 TgC for Populus deltoides and 5.87–14.09 TgC for Eucalyptus spp. The carbon stocks in these seven species account for 36.8%–41.4% of the total carbon stocks in all GGP stands over the next 50 years.  相似文献   

11.
The transboundary networks of Marine Protected Areas (MPAs) project, TRANSMAP, assessed local turnover and regional biodiversity across the East African Marine Ecoregion, where inter-governmental co-operation has been working to connect local MPAs. The benthic fauna in the three most dominant habitats on this coastline??beaches, mangroves and seagrasses??were studied in two Regions (Northern Region, 10?C13°S; Southern Region, 25?C28°S). Meiofaunal taxa were used as the model faunal group owing to their diversity and abundance across habitat types and environmental conditions. Meiofaunal abundance averaged 2,500 individuals 10 cm?2 and was generally higher in mangrove and seagrass sediments than on the beaches, and was significantly different between habitats × Regions. In total, 18 taxa were recorded with highest diversity in the beach samples. Diversity indices and assemblage structure were significantly different between habitats, but also Regions. Specific granulometric 1?? size classes, shore-height and number of rain days were the factors most significantly correlating with the observed assemblage patterns. Additionally, the size of a MPA and latitude (which correlated with MPA age, but not number of rain days), were the factors fitting best with meiofaunal assemblage patterns across the beaches, the habitat for which the most comprehensive data were generated. Sample diversity was higher in the Southern Region, and although within- and across-habitats diversity were similar across the Regions, the two Regions appeared to provide complementary habitats and supported different assemblages. Within the Regions, beaches (the only habitat for which more than one location was sampled) were significantly different between Locations, supporting the establishment of multiple protected locations of the same habitat within each transboundary MPA.  相似文献   

12.
The fishing cat Prionailurus viverrinus is a wetland specialist species endemic to South and Southeast Asia. Nepal represents the northern limit of its biogeographic range, but comprehensive information on fishing cat distribution in Nepal is lacking. To assess their distribution, we compiled fishing cat occurrence records (n = 154) from Nepal, available in published literature and unpublished data (2009–2020). Bioclimatic and environmental variables associated with their occurrence were used to predict the fishing cat habitat suitability using MaxEnt modeling. Fishing cat habitat suitability was associated with elevation (152–302 m), precipitation of the warmest quarter, i.e., April–June (668–1014 mm), precipitation of the driest month (4–7 mm), and land cover (forest/grassland and wetland). The model predicted an area of 4.4% (6679 km2) of Nepal as potential habitat for the fishing cat. About two‐thirds of the predicted potentially suitable habitat lies outside protected areas; however, a large part of the highly suitable habitat (67%) falls within protected areas. The predicted habitat suitability map serves as a reference for future investigation into fishing cat distribution as well as formulating and implementing effective conservation programs in Nepal. Fishing cat conservation initiatives should include habitats inside and outside the protected areas to ensure long‐term survival. We recommend conservation of wetland sites, surveys of fishing cats in the identified potential habitats, and studying their genetic connectivity and population status.  相似文献   

13.
The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41–51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36–37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.  相似文献   

14.
Habitat prediction models were developed for 13 cetacean species of the mid-western North Atlantic Ocean: beaked whale, fin whale, humpback whale, minke whale, pilot whale, sperm whale, bottlenose dolphin, common dolphin, Risso's dolphin, spotted dolphin, whitesided dolphin, and harbor porpoise. Using the multiple logistic regression, sightings of cetaceans during the 1990–1996 summer (June-September) surveys were modeled with oceanographic (sea surface temperature, monthly probability of front occurrence) and topographic (depth, slope) variables for the same period. Predicted habitat maps for June and August were created for each species using a Geographical Information System. The predicted habitat locations matched with current and historic cetacean sighting locations. The model also predicted habitat shifts for some species associated with oceanographic changes. The correct classification rate of the prediction models with 1997–1998 summer survey data ranged from 44% to 70%, of which most of the misclassifications were caused by false positives ( i.e. , absence of sightings at locations where the models predicted).  相似文献   

15.
In the last 20 years yellow fever (YF) has seen dramatic changes to its incidence and geographic extent, with the largest outbreaks in South America since 1940 occurring in the previously unaffected South-East Atlantic coast of Brazil in 2016–2019. While habitat fragmentation and land-cover have previously been implicated in zoonotic disease, their role in YF has not yet been examined. We examined the extent to which vegetation, land-cover, climate and host population predicted the numbers of months a location reported YF per year and by each month over the time-period. Two sets of models were assessed, one looking at interannual differences over the study period (2003–2016), and a seasonal model looking at intra-annual differences by month, averaging over the years of the study period. Each was fit using hierarchical negative-binomial regression in an exhaustive model fitting process. Within each set, the best performing models, as measured by the Akaike Information Criterion (AIC), were combined to create ensemble models to describe interannual and seasonal variation in YF. The models reproduced the spatiotemporal heterogeneities in YF transmission with coefficient of determination (R2) values of 0.43 (95% CI 0.41–0.45) for the interannual model and 0.66 (95% CI 0.64–0.67) for the seasonal model. For the interannual model, EVI, land-cover and vegetation heterogeneity were the primary contributors to the variance explained by the model, and for the seasonal model, EVI, day temperature and rainfall amplitude. Our models explain much of the spatiotemporal variation in YF in South America, both seasonally and across the period 2003–2016. Vegetation type (EVI), heterogeneity in vegetation (perhaps a proxy for habitat fragmentation) and land cover explain much of the trends in YF transmission seen. These findings may help understand the recent expansions of the YF endemic zone, as well as to the highly seasonal nature of YF.  相似文献   

16.
The relationship between species and habitat is important in ecosystem-based fisheries management. Habitat suitability index (HSI) modeling is a valuable tool in ecology and can be used to describe the relationship between fish abundance and ecological variables in order to estimate the suitability of specific habitats. In the present study, an HSI model was applied to determine suitable habitats for the Caspian kutum (Rutilus frisii kutum), an important commercial species in the southern Caspian Sea. An arithmetic mean model (AMM) was found to be the most appropriate model for describing the relationship between two of the environmental variables investigated (depth and benthos biomass). However, a geometric mean model explained the evident relationship when all four environmental variables were used (depth, benthos biomass, photosynthetically active radiation and sea surface temperature). The areas with an HSI > 0.5 had over 85 % of the total catch indicating the reliability of the prediction of the Caspian kutum habitat using the AMM. The present study showed that depth and substrate structure are the most important environmental variables for the Caspian kutum to select its habitats, and between remotely sensed data, chlorophyll a, photosynthetically active radiation and sea surface temperature are the most critical parameters for near real-time prediction of the Caspian kutum habitat.  相似文献   

17.
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more ‘natural’ conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA''s value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.  相似文献   

18.
Aquatic vegetation plays a very important role in providing food, shelter, and nursery habitat and is also regarded as hydraulic resistance in the stream environment. To achieve better ecological restoration, this trade-off should be solved both hydraulically and ecologically. This study quantifies the effect of aquatic vegetation on the spatial distribution of Japanese medaka (Oryzias latipes) to evaluate its importance to fish habitat preference. The preference for aquatic vegetation index is calculated using a fuzzy preference intensity model (FPIM) with interactions among water depth, current velocity and cover ratio in an agricultural canal. In this model, simplified fuzzy reasoning is introduced to explicitly take the essential vagueness of fish behavior into consideration, and a simple genetic algorithm is used to search for an optimum model representation. Uncertainties in measurement errors and dispersions of the physical environment are positively taken into the model using symmetric triangular fuzzy numbers. To overcome the difficulty in model construction with insufficient data observed in an agricultural canal, this model was conjugated with a model developed in a laboratory experiment. The model obtained was then assessed using the AIC (Akaikes Information Criterion) to evaluate the significance of vegetation index with a statistical approach. The results suggest the significance of vegetation index to habitat selection by Japanese medaka and that utilization of the AIC enables us to grasp the validity of an additional factor contributing to habitat prediction with a view to a definite scale  相似文献   

19.

Background

The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.

Methods and Findings

We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005–2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%–151%] in the north versus 37% [95% CI 27%–47%] in the south, p<0.0001). Epidemics peaked in January–February in Northern China (latitude ≥33°N) and April–June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January–February and June–August (periodicity ratio >0.6 in provinces located within 27.4°N–31.3°N, slope of latitudinal gradient with latitude −0.016 [95% CI −0.025 to −0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.

Conclusions

Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4–6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors'' Summary  相似文献   

20.
Coral grouper (genus Plectropomus), or coral trout, are members of the grouper family (Epinephelidae) and are one of the largest and most conspicuous predatory fishes on Indo-Pacific coral reefs. They are highly-prized food fishes that are targeted by subsistence, artisanal, commercial and recreational fisheries throughout their geographic range. Plectropomus have broadly similar diets and habitat requirements to other tropical groupers, but typically have faster growth and higher natural mortality rates. Although these characteristics are expected to increase population turnover and reduce innate vulnerability to environmental and anthropogenic impacts relative to other groupers, many Plectropomus populations are in decline due to the combined effects of overfishing and habitat degradation. In many locations, stock depletion from uncontrolled fishing, particularly at spawning aggregation sites, has resulted in local fishery collapse. Therefore, improved management of wild populations is urgently required to ensure conservation and sustainable fisheries of Plectropomus. Where possible, a combination of no-take marine reserves, market-based management approaches, and allocation or resurrection of property rights systems are recommended to complement conventional fishery management actions that limit catch and effort. Additional investment in aquaculture propagation is also needed to reduce fishing pressure on wild stocks and support management initiatives. This global synthesis of information pertaining to the biology, fisheries and management of Plectropomus will assist in guiding future management actions that are attempting to address a range of stressors including fishing, reef habitat degradation, and the escalating effects of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号