首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The polytopic 5-domain multidrug resistance protein 1 (MRP1/ABCC1) extrudes a variety of drugs and organic anions across the plasma membrane. Four charged residues in the fifth cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 are critical for stable expression of MRP1 at the plasma membrane. Thus Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) all cause misfolding of MRP1 and target the protein for proteasome-mediated degradation. Of four chemical chaperones tested, 4-phenylbutyric acid (4-PBA) was the most effective at restoring expression of MRP1 mutants K513A, K516A, E521A, and E535A. However, although 4-PBA treatment of K513A resulted in wild-type protein levels (and activity), the same treatment had little or no effect on the expression of K516A. On the other hand, 4-PBA treatment allowed both E521A and E535A to exit the endoplasmic reticulum and be stably expressed at the plasma membrane. However, the 4-PBA-rescued E535A mutant exhibited decreased transport activity associated with reduced substrate affinity and conformational changes in both halves of the transporter. By contrast, E521A exhibited reduced transport activity associated with alterations in the mutant interactions with ATP as well as a distinct conformational change in the COOH-proximal half of MRP1. These findings illustrate the critical and complex role of CL5 for stable expression of MRP1 at the plasma membrane and more specifically show the differential importance of Glu(521) and Glu(535) in interdomain interactions required for proper folding and assembly of MRP1 into a fully transport competent native structure.  相似文献   

2.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   

3.
4.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.  相似文献   

5.
The 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH. Previous studies have shown that portions of MSD1 and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. In the present study, Cys residues at positions 43, 49, 85, 148, and 190 in MSD1 and positions 208 and 265 in CL3 were mutated to Ala and Ser, and the effects on protein expression, plasma membrane localization, trypsin sensitivity, organic anion transport, and drug resistance properties were investigated. Confocal microscopy showed that 11 of 14 mutants displayed significant levels of nonplasma membrane-associated MRP1. Most mutant proteins were also more resistant to trypsin proteolysis than wild-type MRP1. All Cys mutants transported organic anions (0.5-1.5-fold wild-type MRP1 activity), and cells expressing Ser-substituted but not Ala-substituted Cys43 and Cys265 MRP1 mutants exhibited a 2.5-fold decrease and a 3-fold increase in arsenite resistance, respectively; Cys43Ser MRP1 also conferred lower levels of vincristine resistance. These results indicate that certain Cys residues in the NH(2) proximal region of MRP1 can be important for its structure and selected transport activities.  相似文献   

6.
We have studied the tissue distribution of Abcc6, a member of the ABC transmembrane transporter subfamily C, in normal C57BL/6 mice. RNase protection assays revealed that although almost all tissues studied contained detectable levels of the mRNA encoding Abcc6, the highest levels of Abcc6 mRNA were found in the liver. In situ hybridization (ISH) demonstrated abundant Abcc6 mRNA in epithelial cells from a variety of tissues, including hepatic parenchymal cells, bile duct epithelia, kidney proximal tubules, mucosa and gland cells of the stomach, intestine, and colon, squamous epithelium of the tongue, corneal epithelium of the eye, keratinocytes of the skin, and tracheal and bronchial epithelium. Furthermore, we detected Abcc6 mRNA in arterial endothelial cells, smooth muscle cells of the aorta and myocardium, in circulating leukocytes, lymphocytes in the thymus and lymph nodes, and in neurons of the brain, spinal cord, and the specialized neurons of the retina. Immunohistochemical analysis using a polyclonal Abcc6 rabbit antibody confirmed the tissue distribution of Abcc6 suggested by our ISH studies and revealed the cellular localization of Abcc6 in the basolateral plasma membrane in the epithelial cells of proximal convoluted tubules in the kidney. Although the function of Abcc6 is unknown, mutations in the human ABCC6 gene result in a heritable disorder of connective tissue called pseudoxanthoma elasticum (PXE). Our results demonstrating the presence of Abcc6 in epithelial and endothelial cells in a variety of tissues, including those tissues affected in PXE patients, suggest a possible role for Abcc6 in the normal assembly of extracellular matrix components. However, the presence of Abcc6 in neurons and leukocytes, two cell populations not associated with connective tissue, also suggests a more complex multifunctional role for Abcc6.  相似文献   

7.
8.
9.
Westlake CJ  Qian YM  Gao M  Vasa M  Cole SP  Deeley RG 《Biochemistry》2003,42(48):14099-14113
Multidrug resistance protein (MRP) 1 is a member of the ABCC branch of the ATP binding cassette (ABC) transporter superfamily that can confer resistance to natural product chemotherapeutic drugs and transport a variety of conjugated organic anions, as well as some unconjugated compounds in a glutathione- (GSH-) dependent manner. In addition to the two tandemly repeated polytopic membrane-spanning domains (MSDs) typical of ABC transporters, MRP1 and its homologues MRP2, -3, -6, and -7 contain a third NH(2)-terminal MSD. The cytoplasmic loop (CL3) connecting this MSD, but apparently not the MSD itself, is required for MRP1 leukotriene C(4) (LTC(4)) transport activity, substrate binding and appropriate trafficking of the protein to the basolateral membrane. We have used a baculovirus dual-expression system to produce various functionally complementing fragments of MRP1 in insect Sf21 cells to precisely define the region in CL3 that is required for activity and substrate binding. Using a parallel approach in polarized MDCK-I cells, we have also defined the region of CL3 that is required for basolateral trafficking. The CL3 NH(2)- and COOH-proximal functional boundaries have been identified as Cys(208) and Asn(260), respectively. Cys(208) also corresponds to the NH(2)-proximal boundary of the region required for basolateral trafficking in MDCK-I cells. However, additional residues downstream of the CL3 COOH-proximal functional boundary extending to Lys(270) were found to be important for basolateral localization. Finally, we show that regions in CL3 necessary for LTC(4) binding and transport are also required for binding of the photoactivatable GSH derivative azidophenacyl-GSH.  相似文献   

10.
11.
Multiple endocrine neoplasia (MEN) type 2B mutations have been reported at methionine 918 or alanine 883 in the tyrosine kinase domain of the RET proto-oncogene. Recently, a new combination of two germline missense mutations at valine 804 and tyrosine 806 was identified in a patient with MEN 2B-like clinical phenotypes including medullary thyroid carcinoma, mucosal neuroma, and marfanoid habitus. In this case, valine 804 and tyrosine 806 were replaced with methionine and cysteine, respectively. In the present study, biological activities of RET with these new mutations were compared with those with known MEN 2A or MEN 2B mutations. The transforming activity of RET with the V804M/Y806C mutation was about 8- to 13-fold higher than that of RET with a single V804M or Y806C mutation. Like RET with the M918T or A883F MEN 2B mutation, the transforming activity of RET with the V804M/Y806C mutation was not affected by substitution of phenylalanine for tyrosine 905 that abolished the activity of RET with the MEN 2A mutation. On the other hand, substitution of phenylalanine for tyrosines 864 and 952 drastically diminished the activity of RET with the V804M/Y806C, M918T or A883F mutation, suggesting that these three mutant proteins have similar biological properties.  相似文献   

12.
The human α1D-adrenergic receptor is a seven transmembrane-domain protein that mediates many of the physiological actions of adrenaline and noradrenaline and participates in the development of hypertension and benign prostatic hyperplasia. We recently reported that different phosphorylation patterns control α1D-adrenergic receptor desensitization. However, to our knowledge, there is no data regarding the role(s) of this receptor's specific phosphorylation residues in its subcellular localization and signaling. In order to address this issue, we mutated the identified phosphorylated residues located on the third intracellular loop and carboxyl tail. In this way, we experimentally confirmed α1D-AR phosphorylation sites and identified, in the carboxyl tail, two groups of residues in close proximity to each other, as well as two individual residues in the proximal (T442) and distal (S543) regions. Our results indicate that phosphorylation of the distal cluster (T507, S515, S516 and S518) favors α1D-AR localization at the plasma membrane, i. e., substitution of these residues for non-phosphorylatable amino acids results in the intracellular localization of the receptors, whereas phospho-mimetic substitution allows plasma membrane localization. Moreover, we found that T442 phosphorylation is necessary for agonist- and phorbol ester-induced receptor colocalization with β-arrestins. Additionally, we observed that substitution of intracellular loop 3 phosphorylation sites for non-phosphorylatable amino acids resulted in sustained ERK1/2 activation; additional mutations in the phosphorylated residues in the carboxyl tail did not alter this pattern. In contrast, mobilization of intracellular calcium and receptor internalization appear to be controlled by the phosphorylation of both third-intracellular-loop and carboxyl terminus-domain residues. In summary, our data indicate that a) both the phosphorylation sites present in the third intracellular loop and in the carboxyl terminus participate in triggering calcium signaling and in turning-off α1D-AR-induced ERK activation; b) phosphorylation of the distal cluster appears to play a role in receptor's plasma membrane localization; and c) T442 appears to play a critical role in receptor phosphorylation and receptor-β-arrestin colocalization.  相似文献   

13.
Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application.  相似文献   

14.
Localization of ATP-binding cassette transporter isoform C1 (ABCC1) to the basolateral membrane of polarized cells is crucial for export of a variety of cellular metabolites; however, the mechanism regulating basolateral targeting of the transporter is poorly understood. Here we describe identification of a basolateral targeting signal in the first cytoplasmic loop domain (CLD1) of human ABCC1. Comparison of the CLD1 amino acid sequences from ABCC1 to ABCC2 revealed that ABCC1 possesses a characteristic sequence, E295EVEALI301, which is comprised of a cluster of acidic glutamate residues followed by a di-leucine motif. This characteristic sequence is highly conserved among vertebrate ABCC1 orthologs and is positioned at a site that is structurally equivalent to the apical targeting signal previously described in ABCC2. Alanine scanning mutagenesis of this sequence in full-length human ABCC1 showed that both L300 and I301 residues were required for basolateral targeting of ABCC1 in polarized HepG2 and MDCK cells. Conversely, E295, E296, and E298 residues were not required for basolateral localization of the transporter. Therefore, a di-leucine motif within the CLD1 is a basolateral targeting determinant of ABCC1.  相似文献   

15.
ATP-binding cassette transporter isoform C2 (ABCC2) localizes to the apical plasma membrane in polarized cells. Apical localization of ABCC2 in hepatocytes plays an important role in biliary excretion of endobiotics and xenobiotics, but the mechanism by which ABCC2 localizes to the apical membrane has not been conclusively elucidated. Here, we investigate the role of scaffolding proteins on ABCC2 localization with a focus on the function of PDZK1 (post-synaptic density 95/disk large/zonula occludens-1 domain containing 1) in regulating ABCC2 localization. The C-terminal 77 residues of ABCC2 were used to probe interacting proteins from HepG2 cells. Protein mass fingerprinting identified PDZK1 as a major interacting protein. PDZK1 associated with the plasma membrane, most likely at the apical vacuoles of HepG2 cells. Affinity pull-down assays confirmed that the C-terminal NSTKF of ABCC2 bound to the fourth PDZ domain of PDZK1. Removal of this PDZ-binding motif significantly reduced the normal apical localization of ABCC2. In HepG2 cells, overexpression of this fourth domain overcame endogenous PDZK1 and reduced the ABCC2 localization at the apical membrane with a reciprocal increase of intracellular accumulation of mislocalized ABCC2. These results suggest a possible role for an interaction between ABCC2 and PDZK1 in apical localization of ABCC2 in hepatocytes.  相似文献   

16.
A crucial problem in neurobiology is how neurons are able to maintain neurotransmitter receptors at specific membrane domains. The large structural heterogeneity of gamma aminobutyric acid receptors (GABAARs) led to the hypothesis that there could be a link between GABAAR gene diversity and the targeting properties of the receptor complex. Previous studies using Fluorescence Recovery After Photobleaching (FRAP) have shown a restricted mobility in GABAARs containing the alpha1 subunit. The M3/M4 cytoplasmic loop is the region of the alpha1 subunit with the lowest sequence homology to other subunits. Therefore, we asked whether the M3/M4 loop is involved in cytoskeletal anchoring and GABAAR clustering. A series of alpha1 chimeric subunits was constructed: alpha1CH (control subunit), alpha1CD (Cytoplasmic loop deleted), alpha1CD2, and alpha1CD3 (alpha1 with the M3/M4 loop from the alpha2 and alpha3 subunits, respectively). Our results using FRAP indicate an involvement of the M3/M4 cytoplasmic loop of the alpha1 subunit in controlling receptor lateral mobility. On the other hand, inmunocytochemical approaches showed that this domain is not involved in subunit targeting to the cell surface, subunit-subunit assembly, or receptor aggregation.  相似文献   

17.
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus.  相似文献   

18.
RhBG, a human member of the Amt/Mep/Rh/superfamily of ammonium transporters, has been shown to facilitate NH(3) transport and to be anchored to the basolateral plasma membrane of kidney epithelial cells, via ankyrin-G. We showed here that triple alanine substitution of the (419)FLD(421) sequence, which links the cytoplasmic C-terminal domain of RhBG to ankyrin-G, not only disrupted the interaction of RhBG with the spectrin-based skeleton but also delayed its cell surface expression, decreased its plasma membrane stability, and abolished its NH(3) transport function in epithelial cell lines. Similarly, we demonstrated that both anchoring to the membrane skeleton and ammonium transport activity are regulated by the phosphorylation status of the C-terminal tail of RhBG. Tyrosine 429, which belongs to the previously reported YED basolateral targeting signal of RhBG, was demonstrated to be phosphorylated in vitro using purified Src and Syk kinases and ex vivo by analyzing the effect of pervanadate treatment on wild-type RhBG or Y429A mutants. Then, we showed that Y429D and Y429E mutations, mimicking constitutive phosphorylation, abolished NH(3) transport and enhanced Triton X-100 solubilization of RhBG from the cell membrane. In contrast, the nonphosphorylated/nonphosphorylatable Y429A and Y429F mutants behaved the same as wild-type RhBG. Conversely, Y/A or Y/F but not Y/E or Y/D mutations of residue 429 abolished the exclusive basolateral localization of RhBG in polarized epithelial cells. All these results led to a model in which targeting and ammonium transport function of RhBG are regulated by both phosphorylation and membrane skeleton binding of the C-terminal cytoplasmic domain.  相似文献   

19.
ABCC4(ATP-binding cassette transporter family class C4,ABCC4)是ABC蛋白家族成员,主要参与转运机体物质代谢中产生的有机阴离子和一些异型生物质等生物学功能。近年研究发现某些人类肿瘤存在Abcc4基因的拷贝数变异,主要表现为Abcc4基因拷贝数增加和ABCC4蛋白过表达,这些改变与肿瘤发生发展、耐药,以及治疗疗效具有相关性。该文综述了Abcc4基因的拷贝数变异和异常表达与肿瘤生物学特性的关系,探讨ABCC4在肿瘤发生发展中的作用机制。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号