首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present and study the behavior of a simple kinetic model for the melting of RNA secondary structures, given that those structures are known. The model is then used as a map that. assigns structure dependent overall rate constants of melting (or refolding) to a sequence. This induces a landscape of reaction rates, or activation energies, over the space of sequences with fixed length. We study the distribution and the correlation structure of these activation energies. Correspondence to: P. Schuster  相似文献   

2.
The thermodynamics of RNA secondary structure formation in small model systems provides a database for predicting RNA structure from sequence. Methods for making these measurements are reviewed with emphasis on optical methods and treatment of experimental errors. Analysis of experimental results in terms of simple nearest-neighbor models is presented. Some measured sequence dependences of non-Watson-Crick motifs are discussed. © 1998 John Wiley & Sons, Inc. Biopoly 44: 309–319, 1997  相似文献   

3.
    
We have investigated amino acid features that determine secondary structure: (1) the solvent accessibility of each side chain, and (2) the interaction of each side chain with others one to four residues apart. Solvent accessibility is a simple model that distinguishes residue environment. The pairwise interactions represent a simple model of local side chain to side chain interactions. To test the importance of these features we developed an algorithm to separate alpha-helices, beta-strands, and \"other\" structure. Single residue and pairwise probabilities were determined for 25,141 samples from proteins with <30% homology. Combining the features of solvent accessibility with pairwise probabilities allows us to distinguish the three structures after cross validation at the 82.0% level. We gain 1.4% to 2.0% accuracy by optimizing the propensities, demonstrating that probabilities do not necessarily reflect propensities. Optimization of residue exposures, weights of all probabilities, and propensities increased accuracy to 84.0%.  相似文献   

4.
It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures from computed base-pairing probabilities in O(N2) time, where N is the length of the sequence. The performance of ProbKnot was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than 700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot prediction. The program is available for download at: http://rna.urmc.rochester.edu/RNAstructure.html.  相似文献   

5.
6.
7.
Prediction of the three-dimensional structure of human growth hormone   总被引:2,自引:0,他引:2  
F E Cohen  I D Kuntz 《Proteins》1987,2(2):162-166
In recent years, the protein-folding problem has attracted the attention of molecular biologists. Efforts have focused on developing heuristic and energy-based algorithms to predict the three-dimensional structure of a protein from its amino acid sequence. We have applied a series of heuristic algorithms to the sequence of human growth hormone. A family of five structures which are generically right-handed fourfold alpha-helical bundles are found from an investigation of approximately 10(8) structures. A plausible receptor binding site is suggested. Independent crystallographic analysis confirms some aspects of these predictions. These methods only deal with the "core" structure, and conformations of many residues are not defined. Further work is required to identify a unique set of coordinates and to clarify the topological alternative available to alpha-helical proteins.  相似文献   

8.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.  相似文献   

9.
    
The secondary structure is a fundamental feature of both non-coding RNAs (ncRNAs) and messenger RNAs (mRNAs). However, our understanding of the secondary structures of mRNAs, especially those of the coding regions, remains elusive, likely due to translation and the lack of RNA-binding proteins that sustain the consensus structure like those binding to ncRNAs. Indeed, mRNAs have recently been found to adopt diverse alternative structures, but the overall functional significance remains untested. We hereby approach this problem by estimating the folding specificity, i.e., the probability that a fragment of an mRNA folds back to the same partner once refolded. We show that the folding specificity of mRNAs is lower than that of ncRNAs and exhibits moderate evolutionary conservation. Notably, we find that specific rather than alternative folding is likely evolutionarily adaptive since specific folding is frequently associated with functionally important genes or sites within a gene. Additional analysis in combination with ribosome density suggests the ability to modulate ribosome movement as one potential functional advantage provided by specific folding. Our findings reveal a novel facet of the RNA structurome with important functional and evolutionary implications and indicate a potential method for distinguishing the mRNA secondary structures maintained by natural selection from molecular noise.  相似文献   

10.
11.
Secondary structure prediction of the catalytic domain of matrix metalloproteinases is evaluated in the light of recently published experimentally determined structures. The prediction was made by combining conformational propensity, surface probability, and residue conservation calculated for an alignment of 19 sequences. The position of each observed secondary structure element was correctly predicted with a high degree of accuracy, with a single beta-strand falsely predicted. The domain fold was also anticipated from the prediction by analogy with the structural elements found in the distantly related metalloproteinases thermolysin, astacin, and adamalysin.  相似文献   

12.
13.
RNA二级结构预测系统构建   总被引:9,自引:0,他引:9       下载免费PDF全文
运用下列RNA二级结构预测算法:碱基最大配对方法、Zuker极小化自由能方法、螺旋区最优堆积、螺旋区随机堆积和所有可能组合方法与基于一级螺旋区的RNA二级结构绘图技术, 构建了RNA二级结构预测系统Rnafold. 另外, 通过随机选取20个tRNA序列, 从自由能和三叶草结构两个方面比较了前4种二级结构预测算法, 并运用t检验方法分析了自由能的统计学差别. 从三叶草结构来看, 以随机堆积方法最好, 其次是螺旋区最优堆积方法和Zuker算法, 以碱基最大配对方法最差. 最后, 分析了两种极小化自由能方法之间的差别.  相似文献   

14.
15.
Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop–stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conformational entropy for the pseudoknotted folds with defined loop–stem tertiary structural contacts. We develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the conformational entropy for a given fold that contains loop–stem tertiary contacts. With the entropy parameters predicted from the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory–experimental comparisons. These comparisons reveal a contact enthalpy (ΔH) of −14 kcal/mol and a contact entropy (ΔS) of −38 cal/mol/K for a protonated C+•(G–C) base triple at pH 7.0, and (ΔH = −7 kcal/mol, ΔS = −19 cal/mol/K) for an unprotonated base triple. Tests of the model for a series of pseudoknots show good theory–experiment agreement. Based on the extracted energy parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways for RNA pseudoknots with known or postulated loop–stem tertiary contacts from the nucleotide sequence alone.  相似文献   

16.
RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 A deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNA(Phe), pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses.  相似文献   

17.
Physical principles determining the protein structure and protein folding are reviewed: (i) the molecular theory of protein secondary structure and the method of its prediction based on this theory; (ii) the existence of a limited set of thermodynamically favourable folding patterns of α- and β-regions in a compact globule which does not depend on the details of the amino acid sequence; (iii) the moderns approaches to the prediction of the folding patterns of α- and β-regions in concrete proteins; (iv) experimental approaches to the mechanism of protein folding. The review reflects theoretical and experimental works of the author and his collaborators as well as those of other groups.  相似文献   

18.
<正> A new method for simulating the folding pathway of RNA secondary structure using the modified ant colony algorithmis proposed.For a given RNA sequence,the set of all possible stems is obtained and the energy of each stem iscalculated and stored at the initial stage.Furthermore,a more realistic formula is used to compute the energy ofmulti-branch loop in the following iteration.Then a folding pathway is simulated,including such processes as constructionof the heuristic information,the rule of initializing the pheromone,the mechanism of choosing the initial andnext stem and the strategy of updating the pheromone between two different stems.Finally by testing RNA sequences withknown secondary structures from the public databases,we analyze the experimental data to select appropriate values forparameters.The measure indexes show that our procedure is more consistent with phylogenetically proven structures thansoftware RNAstructure sometimes and more effective than the standard Genetic Algorithm.  相似文献   

19.
隐藏在基因组中的遗传信息   总被引:5,自引:0,他引:5  
曹更生  柳爱莲  李宁 《遗传》2004,26(5):714-720
  相似文献   

20.
    
Dong Xu  Yang Zhang 《Proteins》2013,81(2):229-239
Fragment assembly using structural motifs excised from other solved proteins has shown to be an efficient method for ab initio protein‐structure prediction. However, how to construct accurate fragments, how to derive optimal restraints from fragments, and what the best fragment length is are the basic issues yet to be systematically examined. In this work, we developed a gapless‐threading method to generate position‐specific structure fragments. Distance profiles and torsion angle pairs are then derived from the fragments by statistical consistency analysis, which achieved comparable accuracy with the machine‐learning‐based methods although the fragments were taken from unrelated proteins. When measured by both accuracies of the derived distance profiles and torsion angle pairs, we come to a consistent conclusion that the optimal fragment length for structural assembly is around 10, and at least 100 fragments at each location are needed to achieve optimal structure assembly. The distant profiles and torsion angle pairs as derived by the fragments have been successfully used in QUARK for ab initio protein structure assembly and are provided by the QUARK online server at http://zhanglab.ccmb. med.umich.edu/QUARK/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号