首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Reconstructions have identified the 20th century as being uniquely warm in the last 1000 years. Changes in the phenology of primary meristems converged toward increases in length of the growing season. Has the phenology of secondary meristem changed during the last century, and to what extent?

Methods

Timings of wood formation in black spruce, Picea mariana, were monitored for 9 years on a weekly timescale at four sites in the boreal forest of Quebec, Canada. Models for assessing xylem phenology were defined and applied to reconstruct onset, ending and duration of xylogenesis between 1950 and 2010 using thermal thresholds on chronologies of maximum and minimum temperatures.

Key Results

All sites exhibited increasing trends of both annual and May–September temperatures, with the greatest changes observed at the higher latitudes. Phenological events in spring were more affected than those occurring in autumn, with cambial resumptions occurring 0·5–0·8 d decade−1 earlier. The duration of xylogenesis has lengthened significantly since 1950, although the models supplied wide ranges of variations, between 0·07 and 1·5 d decade−1, respectively.

Conclusions

The estimated changes in past cambial phenology demonstrated the marked effects of the recent increase in temperature on the phenological traits of secondary meristems. In the long run, the advancement of cambial activity could modify the short time window for growth of boreal species and dramatically affect the dynamics and productivity of trees in these temperature-limited ecosystems.  相似文献   

2.
Xia J  Wan S 《PloS one》2012,7(2):e32088

Background

The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings

A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance

These plants'' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.  相似文献   

3.

Background and Aims

Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada.

Methods

Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem.

Key Results

Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later.

Conclusions

The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring.Key words: Abies balsamea, boreal forest, cambium, cell differentiation, cell wall thickening, lignification, Picea mariana, root, stem, xylem  相似文献   

4.

Background and Aims

Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings.

Methods

Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ.

Key Results

The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole.

Conclusions

The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.  相似文献   

5.

Background and Aims

Wood formation in trees represents a carbon sink that can be modified in the case of stress. The way carbon metabolism constrains growth during stress periods (high temperature and water deficit) is now under debate. In this study, the amounts of non-structural carbohydrates (NSCs) for xylogenesis in black spruce, Picea mariana, saplings were assessed under high temperature and drought in order to determine the role of sugar mobilization for osmotic purposes and its consequences for secondary growth.

Methods

Four-year-old saplings of black spruce in a greenhouse were subjected to different thermal conditions with respect to the outside air temperature (T0) in 2010 (2 and 5 °C higher than T0) and 2011 (6 °C warmer than T0 during the day or night) with a dry period of about 1 month in June of each year. Wood formation together with starch, NSCs and leaf parameters (water potential and photosynthesis) were monitored from May to September.

Key Results

With the exception of raffinose, the amounts of soluble sugars were not modified in the cambium even if gas exchange and photosynthesis were greatly reduced during drought. Raffinose increased more than pinitol under a pre-dawn water potential of less than –1 Mpa, presumably because this compound is better suited than polyol for replacing water and capturing free radicals, and its degradation into simple sugar is easier. Warming decreased the starch storage in the xylem as well the available hexose pool in the cambium and the xylem, probably because of an increase in respiration.

Conclusions

Radial stem growth was reduced during drought due to the mobilization of NSCs for osmotic purposes and due to the lack of cell turgor. Thus plant water status during wood formation can influence the NSCs available for growth in the cambium and xylem.  相似文献   

6.
Cambial activity related to tree size in a mature silver-fir plantation   总被引:1,自引:0,他引:1  

Background and Aims

Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production.

Methods

Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem.

Key Results

Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area.

Conclusions

These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source–sink relationships principally, but also hormonal controls.  相似文献   

7.
Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher's C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation.  相似文献   

8.

Background and Aims

Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology.

Methods

A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009.

Key Results

Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition.

Conclusions

The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors.  相似文献   

9.

Background and Aims

Variation in fitness depends on corresponding variation in multiple traits which have both genetically controlled and plastic components. These traits are subjected to varying degrees of local adaptation in specific populations and, consequently, are genetically controlled to different extents. In this study it is hypothesized that modulation of different traits would have contrasting relevance for the fitness of populations of diverse origins. Specifically, assuming that environmental pressures vary across a latitudinal gradient, it is suggested that inherited variation in traits differentially determines fitness in annual Lupinus angustifolius populations from contrasting latitudinal origins in western Spain.

Methods

Seeds of L. angustifolius from three contrasting origins were grown in a common garden. Traits related to more plastic vegetative growth and more genetically conserved phenology were measured, together with estimates of reproductive success. Fitness was estimated by the number of viable seeds per plant. Structural Equation Models were used to infer causal relationships among multiple traits and fitness, separating the direct and indirect effects of morphological, phenological and reproductive traits.

Key Results

Phenological, vegetative and reproductive traits accounted for most of the fitness variation. Fitness was highest in plants of southernmost origin, mainly due to earlier flowering. Fitness within each seed origin was controlled by variation in different traits. Southern origin plants that grew to a larger size achieved higher fitness. However, plant size in plants of northernmost origin was irrelevant, but early flowering promoted higher fitness. Variation in fruit and seed set had a greater effect on the fitness of plants of central origin than phenological and size variation.

Conclusions

It is concluded that modulation of a functional trait can be relevant to fitness in a given population (i.e. affecting intensity and direction), but irrelevant in other populations. This points to the need to consider integrated phenotypes when trying to unravel local adaptation effects over single traits.Key words: Lupinus, Structural Equation Models, fitness, phenology, functional traits, reproductive success, SLA, seed size  相似文献   

10.

Background and Aims

Flowering phenology is a critical life-history trait that influences reproductive success. It has been shown that genetic, climatic and other factors such as plant size affect the timing of flowering and its duration. The spatial and temporal variation in the reproductive phenology of the columnar cactus Stenocereus thurberi and its association with plant size and environmental cues was studied.

Methods

Flowering was monitored during 3 years in three populations of S. thurberi along a latitudinal gradient. Plant size was related to phenological parameters. The actual and past weather were used for each site and year to investigate the environmental correlates of flowering.

Key Results

There was significant variation in the timing of flowering within and among populations. Flowering lasted 4 months in the southern population and only 2 months in the northern population. A single flowering peak was evident in each population, but ocurred at different times. Large plants produced more flowers, and bloomed earlier and for a longer period than small plants. Population synchrony increased as the mean duration of flowering per individual decreased. The onset of flowering is primarily related to the variance in winter minimum temperatures and the duration to the autumn–winter mean maximum temperature, whereas spring mean maximum temperature is best correlated with synchrony.

Conclusions

Plant size affects individual plant fecundity as well as flowering time. Thus the population structure strongly affects flowering phenology. Indications of clinal variation in the timing of flowering and reproductive effort suggest selection pressures related to the arrival of migrating pollinators, climate and resource economy in a desert environment. These pressures are likely to be relaxed in populations where individual plants can attain large sizes.Key words: Flowering phenology, optimal timing, plant size, Sonoran Desert, Stenocereus thurberi, temperature  相似文献   

11.

Background

The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology.

Methodology/Principal Findings

This study utilizes past (1959–1960) and present (2006–2008) surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m), A1 (2195 m), B1 (2591 m), and C1 (3048 m), located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1) warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs) associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season.

Conclusions

Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger process-oriented and predictive framework for understanding community level phenological responses to climate change.  相似文献   

12.

Background and Aims

Herbivory and plant defence differ markedly among seedlings and juvenile and mature plants in most species. While ontogenetic patterns of chemical resistance have been the focus of much research, comparatively little is known about how tolerance to damage changes across ontogeny. Due to dramatic shifts in plant size, resource acquisition, stored reserves and growth, it was predicted that tolerance and related underlying mechanisms would differ among ontogenetic stages.

Methods

Ontogenetic patterns in the mechanisms of tolerance were investigated in Plantago lanceolata and P. major (Plantaginaceae) using the genetic sib-ship approach. Pot-grown plants were subjected to 50 % defoliation at the seedling, juvenile and mature stages and either harvested in the short-term to look at plasticity in growth and photosynthesis in response to damage or allowed to grow through seed maturation to measure phenology, shoot compensation and reproductive fitness.

Key Results

Tolerance to defoliation was high in P. lanceolata, but low in P. major, and did not vary among ontogenetic stages in either species. Mechanisms underlying tolerance did vary across ontogeny. In P. lanceolata, tolerance was significantly related to flowering (juveniles) and pre-damage shoot biomass (mature plants). In P. major, tolerance was significantly related to pre-damage root biomass (seedlings) and induction of non-photochemical quenching, a photosynthetic parameter (juveniles).

Conclusions

Biomass partitioning was very plastic in response to damage and showed associations with tolerance in both species, indicating a strong role in plant defence. In contrast, photosynthesis and phenology showed weaker responses to damage and were related to tolerance only in certain ontogenetic stages. This study highlights the pivotal role of ontogeny in plant defence and herbivory. Additional studies in more species are needed to determine how seedlings tolerate herbivory in general and whether mechanisms vary across ontogeny in consistent patterns.  相似文献   

13.

Key message

The threshold minimum air temperature driving xylem growth of alpine  Rhododendron aganniphum is lower than that commonly observed at the treeline of conifers.

Abstract

Understanding how alpine shrubs grow and which environmental factors drive their biomass gain could help to functionally differentiate trees and shrubs. The cambium is the main meristem responsible for wood formation in trees and shrubs. Thus, a better knowledge of cambium growth dynamics in alpine shrubs would allow explaining why shrubs displace trees above the treeline. Here, we aim to investigate the timings and dynamics of xylogenesis and to identify the thermal thresholds controlling the onset of xylem growth of Rhododendron aganniphum, a tall shrub growing above the alpine treeline on the Tibetan Plateau. Timings of xylogenesis and radial growth rates were assessed from anatomical observations of the developing xylem during three growing seasons (2011, 2012, and 2013). The threshold temperature at which xylogenesis had a 0.5 probability of being active was calculated with logistic regressions. The onset of xylogenesis was observed between mid and late June, whereas the end of xylogenesis lasted from mid to late September. Overall, the duration of xylem growth lasted 88–101 days, and 94 % of the ring was formed from June to August. The threshold for the onset of xylem growth was observed at 2.0 ± 0.6 °C for the minimum air temperature, lower than that commonly observed for treeline conifers (ca. 6 °C). This low thermal threshold allows alpine shrubs to have a growing season long enough to complete xylem production and maturation during the warmest summer months. Our results suggest that the time required to complete xylogenesis is critical to understand why shrubs displace trees above the treeline.
  相似文献   

14.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

15.
Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau   总被引:1,自引:0,他引:1  

Background

Monitoring vegetation dynamics and their responses to climate change has been the subject of considerable research. This paper aims to detect change trends in grassland activity on the Tibetan Plateau between 1982 and 2006 and relate these to changes in climate.

Methodology/Principal Findings

Grassland activity was analyzed by evaluating remotely sensed Normalized Difference Vegetation Index (NDVI) data collected at 15-day intervals between 1982 and 2006. The timings of vegetation stages (start of green-up, beginning of the growing season, plant maturity, start of senescence and end of the growing season) were assessed using the NDVI ratio method. Mean NDVI values were determined for major vegetation stages (green-up, fast growth, maturity and senescence). All vegetation variables were linked with datasets of monthly temperature and precipitation, and correlations between variables were established using Partial Least Squares regression. Most parts of the Tibetan Plateau showed significantly increasing temperatures, as well as clear advances in late season phenological stages by several weeks. Rainfall trends and significant long-term changes in early season phenology occurred on small parts of the plateau. Vegetation activity increased significantly for all vegetation stages. Most of these changes were related to increasing temperatures during the growing season and in some cases during the previous winter. Precipitation effects appeared less pronounced. Warming thus appears to have shortened the growing season, while increasing vegetation activity.

Conclusions/Significance

Shortening of the growing season despite a longer thermally favorable period implies that vegetation on the Tibetan Plateau is unable to exploit additional thermal resources availed by climate change. Ecosystem composition may no longer be well attuned to the local temperature regime, which has changed rapidly over the past three decades. This apparent lag of the vegetation assemblage behind changes in climate should be taken into account when projecting the impacts of climate change on ecosystem processes.  相似文献   

16.

Background and Aims

During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale.

Methods

The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes.

Key Results

The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself.

Conclusions

Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure.  相似文献   

17.

Background and Aims

The collection of field data on plant traits is time consuming and this makes it difficult to examine changing patterns of traits along large-scale climate gradients. The present study tests whether trait information derived from regional floras can be used in conjunction with pre-existing quadrat data on species presence to derive meaningful relationships between specific morphometric traits and climate.

Methods

Quadrat records were obtained for 867 species in 404 sites from northern China (38–49°N, 82–132°E) together with information on the presence/absence of key traits from floras. Bioclimate parameters for each site were calculated using the BIOME3 model. Principal component analysis and correlation analysis were conducted to determine the most important climate factors. The Akaike Information Criterion was used to select the best relationship between each trait and climate. Canonical correspondence analysis was used to explore the relationships between climate and trait occurrence.

Key Results

The changing abundance of life form, leaf type, phenology, photosynthetic pathway, leaf size and several other morphometric traits are determined by gradients in plant-available moisture (as measured by the ratio of actual to potential evapotranspiration: α), growing-season temperature (as measured by growing degree-days on a 0 ° base: GDD0) or a combination of these. Different plant functional types (PFTs, as defined by life form, leaf type and phenology) reach maximum abundance in distinct areas of this climate space: for example, evergreen trees occur in the coldest, wettest environments (GDD0 < 2500 °Cd, α > 0·38), and deciduous scale-leaved trees occur in drier, warmer environments than deciduous broad-leaved trees. Most leaf-level traits show similar relationships with climate independently of PFT: for example, leaf size in all PFTs increases as the environment becomes wetter and cooler. However, some traits (e.g. petiole length) display different relationships with climate in different PFTs.

Conclusions

Based on presence/absence species data and flora-based trait assignments, the present study demonstrates ecologically plausible trends in the occurrence of key plant traits along climate gradients in northern China. Life form, leaf type, phenology, photosynthetic pathway, leaf size and other key traits reflect climate. The success of these analyses opens the possibility of using quadrat- and flora-based trait analyses to examine climate–trait relationships in other regions of the world.  相似文献   

18.

Background and Aims

Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences.

Methods

Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia.

Key Results

Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types.

Conclusions

The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.  相似文献   

19.

Background and Aims

Knowledge on how climate-induced range shifts might affect natural selection is crucial to understand the evolution of species ranges.

Methods

Using historical demographic perspectives gathered from regional-scale phylogeography on the alpine herb Biscutella laevigata, indirect inferences on gene flow and signature of selection based on AFLP genotyping were compared between local populations persisting at the trailing edge and expanding at the leading edge.

Key Results

Spatial autocorrelation revealed that gene flow was two times more restricted at the trailing edge and genome scans indicated divergent selection in this persisting population. In contrast, no pattern of selection emerged in the expanding population at the leading edge.

Conclusions

Historical effects may determine different architecture of genetic variation and selective patterns within local populations, what is arguably important to understand evolutionary processes acting across the species ranges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号