首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The zinc transporter ZIP4 (Slc39a4) is important for proper mammalian development and is an essential gene in mice. Recent studies suggest that this gene may also play a role in pancreatic cancer.

Methods/Principal Findings

Herein, we present evidence that this essential zinc transporter is expressed in hepatocellular carcinomas. Zip4 mRNA and protein were dramatically elevated in hepatocytes in the majority of human hepatocellular carcinomas relative to noncancerous surrounding tissues, as well as in hepatocytes in hepatocellular carcinomas occurring in farnesoid X receptor-knockout mice. Interestingly, meta-analysis of microarray data in the Geo and Oncomine databases suggests that Zip4 mRNA may also be elevated in many types of cancer. Potential mechanisms of action of ZIP4 were examined in cultured cell lines. RNAi knockdown of Zip4 in mouse Hepa cells significantly increased apoptosis and modestly slowed progression from G0/G1 to S phase when cells were released from hydroxyurea block into zinc-deficient medium. Cell migration assays revealed that RNAi knockdown of Zip4 in Hepa cells depressed in vitro migration whereas forced over-expression in Hepa cells and MCF-7 cells enhanced in vitro migration.

Conclusions

ZIP4 may play a role in the acquisition of zinc by hepatocellular carcinomas, and potentially many different cancerous cell-types, leading to repressed apoptosis, enhanced growth rate and enhanced invasive behavior.  相似文献   

2.
3.
4.
The ZIP5 gene encodes a protein closely related to ZIP4, a zinc transporter mutated in the human genetic disorder acrodermatitis enteropathica. Herein, we demonstrate that mouse ZIP5 and ZIP4 genes are co-expressed in several tissues involved in zinc homeostasis (intestine, pancreas, embryonic yolk sac). However, unlike expression of the ZIP4 gene, which is induced during periods of zinc deficiency, ZIP5 gene expression is unaltered by dietary zinc. Immunohistochemistry localizes ZIP5 to the basolateral surfaces of enterocytes, acinar cells, and visceral endoderm cells in mice fed a zinc-adequate diet. However, this protein is removed from these cell surfaces and internalized during dietary zinc deficiency. In contrast, ZIP4 is induced and recruited to the apical surface of enterocytes and endoderm cells during zinc deficiency. In the pancreas, ZIP4 is expressed in beta-cells, whereas ZIP5 is expressed in acinar cells. These results suggest that the function of ZIP5 is antagonistic to that of ZIP4 in the control of zinc homeostasis; rather than functioning in the acquisition of dietary zinc, as does ZIP4, ZIP5 may function in the removal of zinc from the body. Thus, during periods when dietary zinc is replete, ZIP5 may function to remove zinc from the blood via the pancreas and intestine, the major sites of zinc excretion in mammals, whereas the acquisition of dietary zinc by intestinal ZIP4 would be minimal. In contrast, during periods of dietary zinc deficiency when secretion of zinc by the pancreas and intestine is minimized, ZIP5 is removed from the cell surface, and the intestinal uptake of zinc is augmented by induction of ZIP4.  相似文献   

5.
6.
Subfamily II of the solute carrier (Slc)39a family contains three highly conserved members (ZIPs 1-3) that share a 12-amino acid signature sequence present in the putative fourth transmembrane domain and function as zinc transporters in transfected cells. The physiological significance of this genetic redundancy is unknown. Here we report that the complete elimination of all three of these Zip genes, by targeted mutagenesis and crossbreeding mice, causes no overt phenotypic effect. When mice were fed a zinc-adequate diet, several indicators of zinc status were indistinguishable between wild-type and triple-knockout mice, including embryonic morphogenesis and growth, alkaline phosphatase activity in the embryo, ZIP4 protein in the visceral yolk sac, and initial rates (30 min) of accumulation/retention of (67)Zn in liver and pancreas. When mice were fed a zinc-deficient diet, embryonic membrane-bound alkaline phosphatase activity was reduced to a much greater extent, and 80% of the embryos of the triple-knockout mice developed abnormally compared with 12% of the embryos of wild-type mice. During zinc deficiency, the accumulation/retention (3 h) of (67)Zn in the liver and pancreas of weanlings was significantly impaired in the triple-knockout mice compared with wild-type mice. Thus none of these three mammalian Zip genes apparently plays a critical role in zinc homeostasis when zinc is replete, but they play important, noncompensatory roles when this metal is deficient.  相似文献   

7.
8.
9.

Background

Zinc deficiency due to poor nutrition or genetic mutations in zinc transporters is a global health problem and approaches to providing effective dietary zinc supplementation while avoiding potential toxic side effects are needed.

Methods/Principal Findings

Conditional knockout of the intestinal zinc transporter Zip4 (Slc39a4) in mice creates a model of the lethal human genetic disease acrodermatitis enteropathica (AE). This knockout leads to acute zinc deficiency resulting in rapid weight loss, disrupted intestine integrity and eventually lethality, and therefore provides a model system in which to examine novel approaches to zinc supplementation. We examined the efficacy of dietary clioquinol (CQ), a well characterized zinc chelator/ionophore, in rescuing the Zip4 intest KO phenotype. By 8 days after initiation of the knockout neither dietary CQ nor zinc supplementation in the drinking water was found to be effective at improving this phenotype. In contrast, dietary CQ in conjunction with zinc supplementation was highly effective. Dietary CQ with zinc supplementation rapidly restored intestine stem cell division and differentiation of secretory and the absorptive cells. These changes were accompanied by rapid growth and dramatically increased longevity in the majority of mice, as well as the apparent restoration of the homeostasis of several essential metals in the liver.

Conclusions

These studies suggest that oral CQ (or other 8-hydroxyquinolines) coupled with zinc supplementation could provide a facile approach toward treating zinc deficiency in humans by stimulating stem cell proliferation and differentiation of intestinal epithelial cells.  相似文献   

10.
The mouse and human Zip5 proteins are members of the ZIP family of metal ion transporters. In this study, we present evidence that mouse Zip5 is a zinc uptake transporter that is specific for Zn(II) over other potential metal ion substrates. We also show that, unlike many other mammalian ZIP proteins, the endocytic removal of mZip5 from the plasma membrane is not triggered by zinc treatment. Thus, the activity of mZip5 does not appear to be down-regulated by zinc repletion. Zip5 expression is restricted to many tissues important for zinc homeostasis, including the intestine, pancreas, liver, and kidney. Zip5 is similar in sequence to the Zip4 protein, which is involved in the uptake of dietary zinc. Co-expression of Zip4 and Zip5 in the intestine led to the hypothesis that these proteins play overlapping roles in the uptake of dietary zinc across the apical membrane of intestinal enterocytes. Surprisingly, however, we found that mZip5 localizes specifically to the basolateral membrane of polarized Madin-Darby canine kidney cells. These observations suggest that Zip5 plays a novel role in polarized cells by carrying out serosal-to-mucosal zinc transport. Furthermore, given its expression in tissues important to zinc homeostasis, we propose that Zip5 plays a central role in controlling organismal zinc status.  相似文献   

11.
Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD), cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2 transporters responding differently to zinc deficiency signals and that these play important roles in macrophage efferocytosis.  相似文献   

12.
Subfamily II of the solute-linked carrier 39A superfamily contains three well-conserved zinc transporters (ZIPs1, 2, 3) whose physiological functions are unknown. We generated mice homozygous for knockout alleles of ZIP1 and both ZIP1 and ZIP 3 (double-knockout). These mice were apparently normal when dietary zinc was replete, but when dietary zinc was limited during pregnancy embryos from ZIP1 or ZIP3 knockout mice were two to three times more likely to develop abnormally than those in wildtype mice, and 91% (71/78) of embryos developed abnormally in ZIP1, ZIP3 double-knockout mice. Analysis of the patterns of expression of these genes in mice revealed predominate expression in intestinal stromal cells, nephric-tubular epithelial cells, pancreatic ductal epithelial cells, and hepatocytes surrounding the central vein. This suggests that these zinc transporters function, at least in part, in the redistribution and/or retention of zinc rather than its acquisition from the diet. In conclusion, mutations in the ZIP1 and ZIP3 zinc transporter genes are silent when dietary intake of zinc is normal, but can dramatically compromise the success of pregnancy when dietary intake of zinc is limiting.  相似文献   

13.
Weaver BP  Andrews GK 《Biometals》2012,25(2):319-335
Translation of the basolateral zinc transporter ZIP5 is repressed during zinc deficiency but Zip5 mRNA remains associated with polysomes and can be rapidly translated when zinc is repleted. Herein, we examined the mechanisms regulating translation of Zip5. The 3′-untranslated region (UTR) of Zip5 mRNA is well conserved among mammals and is predicted by mFOLD to form a very stable stem-loop structure. Three algorithms predict this structure to be flanked by repeated seed sites for miR-328 and miR-193a. RNAse footprinting supports the notion that a stable stem-loop structure exists in this 3′-UTR and electrophoretic mobility shift assays detect polysomal protein(s) binding specifically to the stem-loop structure in the Zip5 3′-UTR. miR-328 and miR-193a are expressed in tissues known to regulate Zip5 mRNA translation in response to zinc availability and both are polysome-associated consistent with Zip5 mRNA localization. Transient transfection assays using native and mutant Zip5 3′-UTRs cloned 3′ to luciferase cDNA revealed that the miRNA seed sites and the stem-loop function together to augment translation of Zip5 mRNA when zinc is replete.  相似文献   

14.
15.
Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer''s disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the ‘zinc wave’ and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells. An siRNA targeting Zip7 mRNA down regulated Zip7 mRNA 4.6-fold (p = 0.0006) when compared to a scramble control. This was concomitant with a reduction in the expression of genes involved in glucose metabolism including Agl, Dlst, Galm, Gbe1, Idh3g, Pck2, Pgam2, Pgm2, Phkb, Pygm, Tpi1, Gusb and Glut4. Glut4 protein expression was also reduced and insulin-stimulated glycogen synthesis was decreased. This was associated with a reduction in the mRNA expression of Insr, Irs1 and Irs2, and the phosphorylation of Akt. These studies provide a novel role for Zip7 in glucose metabolism in skeletal muscle and highlight the importance of this transporter in contributing to glycaemic control in this tissue.  相似文献   

16.

Background

Age-related macular degeneration (AMD) is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet.

Methodology/Principal Findings

Adult Long Evans (LE) rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE) were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX) microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE). The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm) found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch''s membrane of ZD-LE rats varied between 0.4–3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch''s membrane or even inside it.

Conclusions/Significance

In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch''s membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch''s membrane.  相似文献   

17.
The essential trace element zinc is important for all living organisms. Zinc functions not only as a nutritional factor, but also as a second messenger. However, the effects of intracellular zinc on the B cell-receptor (BCR) signaling pathway remain poorly understood. Here, we present data indicating that the increase in intracellular zinc level induced by ZIP9/SLC39A9 (a ZIP Zrt-/Irt-like protein) plays an important role in the activation of Akt and Erk in response to BCR activation. In DT40 cells, the enhancement of Akt and Erk phosphorylation following BCR activation requires intracellular zinc. To clarify this event, we used chicken ZnT5/6/7-gene-triple-knockout DT40 (TKO) cells and chicken Zip9-knockout DT40 (cZip9KO) cells. The levels of Akt and ERK phosphorylation significantly decreased in cZip9KO cells. In addition, the enzymatic activity of protein tyrosine phosphatase (PTPase) increased in cZip9KO cells. These biochemical events were restored by overexpressing the human Zip9 (hZip9) gene. Moreover, we found that the increase in intracellular zinc level depends on the expression of ZIP9. This observation is in agreement with the increased levels of Akt and Erk phosphorylation and the inhibition of total PTPase activity. We concluded that ZIP9 regulates cytosolic zinc level, resulting in the enhancement of Akt and Erk phosphorylation. Our observations provide new mechanistic insights into the BCR signaling pathway underlying the regulation of intracellular zinc level by ZIP9 in response to the BCR activation.  相似文献   

18.
Parotid glands of experimental animals fed a liquid diet are reported to show atrophy (Hall and Schneyer 1964; Wilborn and Schneyer 1970; Hand and Ho 1981; Scott et al. 1990; Scott and Gunn 1991). To clarify whether apoptosis and proliferation of acinar cells participate in atrophy of rat parotid glands induced by liquid diet, rats were fed a liquid diet and compared to pellet-fed controls. Parotid glands were removed at 3, 7, 14 or 21?days, weighed, and examined using transmission electron microscopy (TEM), and studied immunohistochemically for cleaved-caspase-3 (Casp-3), a marker of apoptotic cells, and 5-bromo-2′-deoxyuridine (BrdU), a marker for proliferating cells. Body weights of experimental rats fed liquid diets were not significantly different from controls fed pellet diets; however weights of experimental parotid glands were smaller than those of controls. In the experimental parotid glands, structures like apoptotic bodies were histologically observed in acini at each time point; more Casp-3-positive acinar cells were identified in experimental parotid glands than in the controls on days 3, 7, and 14. Experimental glands showed fewer BrdU-positive acinar cells at each time point. TEM confirmed typical apoptotic acinar cells in the atrophic glands. These findings suggest that increased acinar cell apoptosis and reduced acinar cell proliferation occur in atrophic parotid glands of rats fed a liquid diet.  相似文献   

19.

Background and Aims

Zinc uptake in roots is believed to be mediated by ZIP (ZRT-, IRT-like proteins) transporters. Once inside the symplast, zinc is transported to the pericycle, where it exits by means of HMA (heavy metal ATPase) transporters. The combination of symplastic transport and spatial separation of influx and efflux produces a pattern in which zinc accumulates in the pericycle. Here, mathematical modelling was employed to study the importance of ZIP regulation, HMA abundance and symplastic transport in creation of the radial pattern of zinc in primary roots of Arabidopsis thaliana.

Methods

A comprehensive one-dimensional dynamic model of radial zinc transport in roots was developed and used to conduct simulations. The model accounts for the structure of the root consisting of symplast and apoplast and includes effects of water flow, diffusion and cross-membrane transport via transporters. It also incorporates the radial geometry and varying porosity of root tissues, as well as regulation of ZIP transporters.

Key Results

Steady-state patterns were calculated for various zinc concentrations in the medium, water influx and HMA abundance. The experimentally observed zinc gradient was reproduced very well. An increase of HMA or decrease in water influx led to loss of the gradient. The dynamic behaviour for a change in medium concentration and water influx was also simulated showing short adaptation times in the range of seconds to minutes. Slowing down regulation led to oscillations in expression levels, suggesting the need for rapid regulation and existence of buffering agents.

Conclusions

The model captures the experimental findings very well and confirms the hypothesis that low abundance of HMA4 produces a radial gradient in zinc concentration. Surprisingly, transpiration was found also to be a key parameter. The model suggests that ZIP regulation takes place on a comparable timescale as symplastic transport.  相似文献   

20.

Background

Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown.

Methodology/Principal Findings

Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice.

Conclusions/Significance

Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号