首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human babesiosis is caused by one of several babesial species transmitted by ixodid ticks that have distinct geographical distributions based on the presence of competent animal hosts. The pathology of babesiosis, like malaria, is a consequence of the parasitaemia which develops through the cyclical replication of Babesia parasites in a patient''s red blood cells, though symptoms typically are nonspecific. We have identified the gene encoding Rhoptry-Associated Protein −1 (RAP-1) from a human isolate of B. divergens, Rouen1987 and characterized its protein product at the molecular and cellular level. Consistent with other Babesia RAP-1 homologues, BdRAP-1 is expressed as a 46 kDa protein in the parasite rhoptries, suggesting a possible role in red cell invasion. Native BdRAP-1 binds to an unidentified red cell receptor(s) that appears to be non-sialylated and non-proteinacious in nature, but we do not find significant reduction in growth with anti-rRAP1 antibodies in vitro, highlighting the possibility the B. divergens is able to use alternative pathways for invasion, or there is an alternative, complementary, role for BdRAP-1 during the invasion process. As it is the parasite''s ability to recognize and then invade host cells which is central to clinical disease, characterising and understanding the role of Babesia-derived proteins involved in these steps are of great interest for the development of an effective prophylaxis.  相似文献   

2.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

3.
The biogenesis, organization and function of the rhoptries are not well understood. Antisera were prepared to synthetic peptides prepared as multiple antigenic peptides (MAPs) obtained from a Plasmodium yoelii merozoite rhoptry proteome analysis. The antisera were used in immunofluorescence and immunoelectron microscopy of schizont-infected erythrocytes. Twenty-seven novel rhoptry proteins representing proteases, metabolic enzymes, secreted proteins and hypothetical proteins, were identified in the body of the rhoptries by immunoelectron microscopy. The merozoite rhoptries contain a heterogeneous mixture of proteins that may initiate host cell invasion and establish intracellular parasite development.  相似文献   

4.
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.  相似文献   

5.
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.  相似文献   

6.
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.  相似文献   

7.
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.  相似文献   

8.
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.  相似文献   

9.
10.
Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion.  相似文献   

11.
A novel apicomplexan parasite was serendipitously discovered in horses at the United States – Mexico border. Phylogenetic analysis based on 18S rDNA showed the erythrocyte-infective parasite to be related to, but distinct from, Theileria spp. in Africa, the most similar taxa being Theileria spp. from waterbuck and mountain zebra. The degree of sequence variability observed at the 18S rDNA locus also suggests the likely existence of additional cryptic species. Among described species, the genome of this novel equid Theileria parasite is most similar to that of Theileria equi, also a pathogen of horses. The estimated divergence time between the new Theileria sp. and T. equi, based on genomic sequence data, is greater than 33?million years. Average protein sequence divergence between them, at 23%, is greater than that of Theileria parva and Theileria annulata proteins, which is 18%. The latter two represent highly virulent Theileria spp. of domestic cattle, as well as of African and Asian wild buffalo, respectively, which differ markedly in pathology, host cell tropism, tick vector and geographical distribution. The extent of genome-wide sequence divergence, as well as significant morphological differences, relative to T. equi justify the classification of Theileria sp. as a new taxon. Despite the overall genomic divergence, the nine member equi merozoite antigen (EMA) superfamily, previously found as a multigene family only in T. equi, is also present in the novel parasite. Practically, significant sequence divergence in antigenic loci resulted in this undescribed Theileria sp. not being detectable using currently available diagnostic tests. Discovery of this novel species infective to equids highlights exceptional diversity within the genus Theileria, a finding with serious implications for apicomplexan parasite surveillance.  相似文献   

12.
Host cytosolic proteins are endocytosed by Toxoplasma gondii and degraded in its lysosome‐like compartment, the vacuolar compartment (VAC), but the dynamics and route of endocytic trafficking remain undefined. Conserved endocytic components and plant‐like features suggest T. gondii endocytic trafficking involves transit through early and late endosome‐like compartments (ELCs) and potentially the trans‐Golgi network (TGN) as in plants. However, exocytic trafficking to regulated secretory organelles, micronemes and rhoptries, also proceeds through ELCs and requires classical endocytic components, including a dynamin‐related protein, DrpB. Here, we show that host cytosolic proteins are endocytosed within 7 minutes post‐invasion, trafficked through ELCs en route to the VAC, and degraded within 30 minutes. We could not definitively interpret if ingested protein is trafficked through the TGN. We also found that parasites ingest material from the host cytosol throughout the parasite cell cycle. Ingested host proteins colocalize with immature microneme proteins, proM2AP and proMIC5, in transit to the micronemes, but not with the immature rhoptry protein proRON4, indicating that endocytic trafficking of ingested protein intersects with exocytic trafficking of microneme proteins. Finally, we show that conditional expression of a DrpB dominant negative mutant increases T. gondii ingestion of host‐derived proteins, suggesting that DrpB is not required for parasite endocytosis.   相似文献   

13.
Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed susceptibility, and strain virulence.  相似文献   

14.
The rhoptries are key secretory organelles from apicomplexan parasites that contain proteins involved in invasion and modulation of the host cell. Some rhoptry proteins are restricted to the posterior bulb (ROPs) and others to the anterior neck (RONs). As many rhoptry proteins have been shown to be key players in Toxoplasma invasion and virulence, it is important to identify, understand and characterise the biological function of the components of the rhoptries. In this report, we identified putative novel rhoptry genes by identifying Toxoplasma genes with similar cyclical expression profiles as known rhoptry protein encoding genes. Using this approach we identified two new rhoptry bulb (ROP47 and ROP48) and one new rhoptry neck protein (RON12). ROP47 is secreted and traffics to the host cell nucleus, RON12 was not detected at the moving junction during invasion. Deletion of ROP47 or ROP48 in a type II strain did not show major influence in in vitro growth or virulence in mice.  相似文献   

15.
Plasmodium parasites must invade erythrocytes in order to cause the disease malaria. The invasion process involves the coordinated secretion of parasite proteins from apical organelles that include the rhoptries. The rhoptry is comprised of two compartments: the neck and the bulb. Rhoptry neck proteins are involved in host cell adhesion and formation of the tight junction that forms between the invading parasite and erythrocyte, whereas the role of rhoptry bulb proteins remains ill‐defined due to the lack of functional studies. In this study, we show that the rhoptry‐associated protein (RAP) complex is not required for rhoptry morphology or erythrocyte invasion. Instead, post‐invasion when the parasite is bounded by a parasitophorous vacuolar membrane (PVM), the RAP complex facilitates the survival of the parasite in its new intracellular environment. Consequently, conditional knockdown of members of the RAP complex leads to altered PVM structure, delayed intra‐erythrocytic growth, and reduced parasitaemias in infected mice. This study provides evidence that rhoptry bulb proteins localising to the parasite–host cell interface are not simply by‐products of the invasion process but contribute to the growth of Plasmodium in vivo.  相似文献   

16.
Numerous intracellular pathogens exploit cell surface glycoconjugates for host cell recognition and entry. Unlike bacteria and viruses, Toxoplasma gondii and other parasites of the phylum Apicomplexa actively invade host cells, and this process critically depends on adhesins (microneme proteins) released onto the parasite surface from intracellular organelles called micronemes (MIC). The microneme adhesive repeat (MAR) domain of T. gondii MIC1 (TgMIC1) recognizes sialic acid (Sia), a key determinant on the host cell surface for invasion by this pathogen. By complementation and invasion assays, we demonstrate that TgMIC1 is one important player in Sia-dependent invasion and that another novel Sia-binding lectin, designated TgMIC13, is also involved. Using BLAST searches, we identify a family of MAR-containing proteins in enteroparasitic coccidians, a subclass of apicomplexans, including T. gondii, suggesting that all these parasites exploit sialylated glycoconjugates on host cells as determinants for enteric invasion. Furthermore, this protein family might provide a basis for the broad host cell range observed for coccidians that form tissue cysts during chronic infection. Carbohydrate microarray analyses, corroborated by structural considerations, show that TgMIC13, TgMIC1, and its homologue Neospora caninum MIC1 (NcMIC1) share a preference for α2–3- over α2–6-linked sialyl-N-acetyllactosamine sequences. However, the three lectins also display differences in binding preferences. Intense binding of TgMIC13 to α2–9-linked disialyl sequence reported on embryonal cells and relatively strong binding to 4-O-acetylated-Sia found on gut epithelium and binding of NcMIC1 to 6′sulfo-sialyl Lewisx might have implications for tissue tropism.  相似文献   

17.
Chen Z  Harb OS  Roos DS 《PloS one》2008,3(10):e3611
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.  相似文献   

18.
19.
Apicomplexan parasites including Toxoplasma gondii and Plasmodium spp. manufacture a complex arsenal of secreted proteins used to interact with and manipulate their host environment. These proteins are organised into three principle exocytotic compartment types according to their functions: micronemes for extracellular attachment and motility, rhoptries for host cell penetration, and dense granules for subsequent manipulation of the host intracellular environment. The order and timing of these events during the parasite's invasion cycle dictates when exocytosis from each compartment occurs. Tight control of compartment secretion is, therefore, an integral part of apicomplexan biology. Control of microneme exocytosis is best understood, where cytosolic intermediate molecular messengers cGMP and Ca2+ act as positive signals. The mechanisms for controlling secretion from rhoptries and dense granules, however, are virtually unknown. Here, we present evidence that dense granule exocytosis is negatively regulated by cytosolic Ca2+, and we show that this Ca2+‐mediated response is contingent on the function of calcium‐dependent protein kinases TgCDPK1 and TgCDPK3. Reciprocal control of micronemes and dense granules provides an elegant solution to the mutually exclusive functions of these exocytotic compartments in parasite invasion cycles and further demonstrates the central role that Ca2+ signalling plays in the invasion biology of apicomplexan parasites.  相似文献   

20.
Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号