首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RhoA/Rho kinase (ROCK) signaling has been suggested to be involved in diabetic nephropathy (DN) pathogenesis. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. Both of them have been found to regulate nuclear factor kappa-B (NF-κB) activation in high glucose-treated glomerular mesangial cells (GMCs). The aim of this study was to investigate the relationship between RhoA/ROCK signaling and Cx43 in the DN pathogenesis. We found that upregulation of Cx43 expression inhibited NF-κB p65 nuclear translocation induced by RhoA/ROCK signaling in GMCs. Inhibition of RhoA/ROCK signaling attenuated the high glucose-induced decrease in Cx43. F-actin accumulation and an enhanced interaction between zonula occludens-1 (ZO-1) and Cx43 were observed in high glucose-treated GMCs. ZO-1 depletion or disruption of F-actin formation also inhibited the reduction in Cx43 protein levels induced by high glucose. In conclusion, activated RhoA/ROCK signaling induces Cx43 degradation in GMCs cultured in high glucose, depending on F-actin regulation. Increased F-actin induced by RhoA/ROCK signaling promotes the association between ZO-1 and Cx43, which possibly triggered Cx43 endocytosis, a mechanism of NF-κB activation in high glucose-treated GMCs.  相似文献   

2.

Background & Aims

Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs). This study aims to investigate the effects of FAEEs on barrier function, and to explore the role of oxidative stress as possible mechanism.

Methods

Epithelial permeability was assessed by paracellular flux of fluorescein isothiocyanate-conjugated dextran using live cell imaging. Cell integrity was evaluated by lactate dehydrogenase release. Localization and protein levels of ZO-1 and occludin were analyzed by immunofluorescence and cell-based ELISA, respectively. Intracellular oxidative stress and cellular ATP levels were measured by dichlorofluorescein and luciferase driven bioluminescence, respectively.

Results

In vitro, ethyl oleate and ethyl palmitate dose dependently increased permeability associated with disruption and decreased ZO-1 and occludin protein levels, respectively, and increased intracellular oxidative stress without compromising cell viability. These effects could partially be attenuated by pretreatment with the antioxidant, resveratrol, pointing to the role of oxidative stress in the FAEEs-induced intestinal barrier dysfunction.

Conclusions

These findings show that FAEEs can induce intestinal barrier dysfunction by disrupting the tight junctions, most likely via reactive oxygen species-dependent mechanism.  相似文献   

3.

Background

Migrating leukocytes normally have a polarized morphology with an actin-rich lamellipodium at the front and a uropod at the rear. Microtubules (MTs) are required for persistent migration and chemotaxis, but how they affect cell polarity is not known.

Methodology/Principal Findings

Here we report that T cells treated with nocodazole to disrupt MTs are unable to form a stable uropod or lamellipodium, and instead often move by membrane blebbing with reduced migratory persistence. However, uropod-localized receptors and ezrin/radixin/moesin proteins still cluster in nocodazole-treated cells, indicating that MTs are required specifically for uropod stability. Nocodazole stimulates RhoA activity, and inhibition of the RhoA target ROCK allows nocodazole-treated cells to re-establish lamellipodia and uropods and persistent migratory polarity. ROCK inhibition decreases nocodazole-induced membrane blebbing and stabilizes MTs. The myosin inhibitor blebbistatin also stabilizes MTs, indicating that RhoA/ROCK act through myosin II to destabilize MTs.

Conclusions/Significance

Our results indicate that RhoA/ROCK signaling normally contributes to migration by affecting both actomyosin contractility and MT stability. We propose that regulation of MT stability and RhoA/ROCK activity is a mechanism to alter T-cell migratory behavior from lamellipodium-based persistent migration to bleb-based migration with frequent turning.  相似文献   

4.

Background

Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI.

Methods

Mouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R mutant juxtamembrane domain (K83R-JMD), were subjected to 20 % cyclic stretches for 2 or 4 h. Furthermore, MLE-12 cells and mice, which were pretreated with the c-Src inhibitor PP2 or RhoA inhibitor Y27632, underwent 20 % cyclic stretches or mechanical stretching, respectively. Moreover, wild-type C57BL/6 mice were transfected with p120 siRNA-liposome complexes before mechanical ventilation. Cell lysates and lung tissues were then analyzed to detect lung injury.

Results

cyclic stretches of 20 % actived c-Src, which induced degradation of E-cadherin, p120 and occludin. However, loss of p120 increased the degradation and endocytosis of E-cadherin. Immunoprecipitation and Immunofluorescence results showed a decrease in the association between p120 and E-cadherin, while gap formation increased in p120 siRNA and K83R-JMD groups after 20 % cyclic stretches. Loss of p120 also reduced the occludin level and decreased the association of occludin and ZO-1 by enhancing RhoA activity. However, the altered levels of occludin and E-cadherin were reversed by PP2 or Y27632 treatments compared with the cyclic stretch group. Consistently, the expression, redistribution and disassociation of junction proteins were all restored in the p120 overexpression group after 20 % cyclic stretches. Moreover, the role of p120 in VILI was confirmed by increased wet/dry weigh ratio and enhanced production of cytokines (tumor necrosis factor-α and interleukin-six) in p120-depleted mice under mechanical ventilation.

Conclusions

p120 protected against VILI by regulating both adherens and tight junctions. p120 inhibited E-cadherin endocytosis by increasing the association between p120 and juxtamembrane domain of E-cadherin. Furthermore, p120 reduced the degradation of occludin by inhibiting RhoA activity. These findings illustrated further mechanisms of p120 in the prevention of VILI, especially for patients with ALI or ARDS.  相似文献   

5.

Background

Prolonged exposure to hyperoxia in neonates can cause hyperoxic acute lung injury (HALI), which is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and maintenance of barrier properties requires intact epithelial tight junctions (TJs). However, in neonatal animals, relatively little is known about how the TJ proteins are expressed in the pulmonary epithelium, including whether expression of TJ proteins is regulated in response to hyperoxia exposure. This study determines whether changes in tight junctions play an important role in disruption of the pulmonary epithelial barrier during hyperoxic acute lung injury.

Methods

Newborn rats, randomly divided into two groups, were exposed to hyperoxia (95% oxygen) or normoxia for 1–7 days, and the severity of lung injury was assessed; location and expression of key tight junction protein occludin and ZO-1 were examined by immunofluorescence staining and immunobloting; messenger RNA in lung tissue was studied by RT-PCR; transmission electron microscopy study was performed for the detection of tight junction morphology.

Results

We found that different durations of hyperoxia exposure caused different degrees of lung injury in newborn rats. Treatment with hyperoxia for prolonged duration contributed to more serious lung injury, which was characterized by increased wet-to-dry ratio, extravascular lung water content, and bronchoalveolar lavage fluid (BALF):serum FD4 ratio. Transmission electron microscopy study demonstrated that hyperoxia destroyed the structure of tight junctions and prolonged hyperoxia exposure, enhancing the structure destruction. The results were compatible with pathohistologic findings. We found that hyperoxia markedly disrupted the membrane localization and downregulated the cytoplasm expression of the key tight junction proteins occludin and ZO-1 in the alveolar epithelium by immunofluorescence. The changes of messenger RNA and protein expression of occludin and ZO-1 in lung tissue detected by RT-PCR and immunoblotting were consistent with the degree of lung injury.

Conclusions

These data suggest that the disruption of the pulmonary epithelial barrier induced by hyperoxia is, at least in part, due to massive deterioration in the expression and localization of key TJ proteins.  相似文献   

6.

Background

The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation.

Methodology and Principal Findings

We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation.

Conclusion

These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation.  相似文献   

7.

Background

Obesity-related diabetes mellitus leads to increased myocardial uptake and oxidation of fatty acids, resulting in a form of cardiac dysfunction referred to as lipotoxic cardiomyopathy. We have shown previously that Astragalus polysaccharides (APS) administration was sufficient to improve the systemic metabolic disorder and cardiac dysfunction in diabetic models.

Methodology/Principal Findings

To investigate the precise role of APS therapy in the pathogenesis of myocardial lipotoxity in diabetes, db/db diabetic mice and myosin heavy chain (MHC)- peroxisome proliferator-activated receptor (PPAR) α mice were characterized and administrated with or without APS with C57 wide- type mice as normal control. APS treatment strikingly improved the myocyte triacylglyceride accumulation and cardiac dysfunction in both db/db mice and MHC-PPARα mice, with the normalization of energy metabolic derangements in both db/db diabetic hearts and MHC-PPARα hearts. Consistently, the activation of PPARα target genes involved in myocardial fatty acid uptake and oxidation in both db/db diabetic hearts and MHC-PPARα hearts was reciprocally repressed by APS administration, while PPARα-mediated suppression of genes involved in glucose utilization of both diabetic hearts and MHC-PPARα hearts was reversed by treatment with APS.

Conclusions

We conclude that APS therapy could prevent the development of diabetic cardiomyopathy through a mechanism mainly dependent on the cardiac PPARα-mediated regulatory pathways.  相似文献   

8.

Background

Intestinal barrier failure may lead to systemic inflammation and distant organ injury in patients following severe injury. Enteric glia cells (EGCs) have been shown to play an important role in maintaining gut barrier integrity through secretion of S-Nitrosoglutathione (GSNO). We have recently shown than Vagal Nerve Stimulation (VNS) increases EGC activation, which was associated with improved gut barrier integrity. Thus, we sought to further study the mechanism by which EGCs prevent intestinal barrier breakdown utilizing an in vitro model. We postulated that EGCs, through the secretion of GSNO, would improve intestinal barrier function through improved expression and localization of intestinal tight junction proteins.

Methods

Epithelial cells were co-cultured with EGCs or incubated with GSNO and exposed to Cytomix (TNF-α, INF-γ, IL-1β) for 24 hours. Barrier function was assessed by permeability to 4kDa FITC-Dextran. Changes in tight junction proteins ZO-1, occludin, and phospho-MLC (P-MLC) were assessed by immunohistochemistry and immunoblot.

Key Results

Co-culture of Cytomix-stimulated epithelial monolayers with EGCs prevented increases in permeability and improved expression and localization of occludin, ZO-1, and P-MLC. Further, treatment of epithelial monolayers with GSNO also prevented Cytomix-induced increases in permeability and exhibited a similar improvement in expression and localization of occludin, ZO-1, and P-MLC.

Conclusions & Inferences

The addition of EGCs, or their secreted mediator GSNO, prevents epithelial barrier failure after injury and improved expression of tight junction proteins. Thus, therapies that increase EGC activation, such as VNS, may be a novel strategy to limit barrier failure in patients following severe injury.  相似文献   

9.

Aims/Hypothesis

Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats.

Methods

Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast. The purified protein was administered at 10–30 mg/kg i.p. b.i.d. to diabetic db/db mice for 2 weeks. Furthermore, high molecular weight human and globular mouse adiponectin batches were administered at 5–15 mg/kg i.p. b.i.d. to diabetic sand rats for 12 days.

Results

Surprisingly, none of our batches had any effect on blood glucose, HbA1c, plasma lipids or body weight in diabetic db/db mice or sand rats. In vitro biological, biochemical and biophysical data suggest that the protein was correctly folded and biologically active.

Conclusions/Interpretation

Recombinant adiponectin is ineffective at lowering blood glucose in diabetic db/db mice or sand rats.  相似文献   

10.

Background

ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.

Methodology/Principal Findings

In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.

Conclusions

ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes.  相似文献   

11.
Chen C  Wang P  Su Q  Wang S  Wang F 《PloS one》2012,7(4):e34946

Background

Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction.

Methodology/Principal Findings

Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression.

Conclusions/Significance

The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.  相似文献   

12.

Objective

Sulodexide is a mixture of glycosaminoglycans that may reduce proteinuria in diabetic nephropathy (DN), but its mechanism of action and effect on renal histology is not known. We investigated the effect of sulodexide on disease manifestations in a murine model of type I DN.

Methods

Male C57BL/6 mice were rendered diabetic with streptozotocin. After the onset of proteinuria, mice were randomized to receive sulodexide (1 mg/kg/day) or saline for up to 12 weeks and renal function, histology and fibrosis were examined. The effect of sulodexide on fibrogenesis in murine mesangial cells (MMC) was also investigated.

Results

Mice with DN showed progressive albuminuria and renal deterioration over time, accompanied by mesangial expansion, PKC and ERK activation, increased renal expression of TGF-β1, fibronectin and collagen type I, III and IV, but decreased glomerular perlecan expression. Sulodexide treatment significantly reduced albuminuria, improved renal function, increased glomerular perlecan expression and reduced collagen type I and IV expression and ERK activation. Intra-glomerular PKC-α activation was not affected by sulodexide treatment whereas glomerular expression of fibronectin and collagen type III was increased. MMC stimulated with 30 mM D-glucose showed increased PKC and ERK mediated fibronectin and collagen type III synthesis. Sulodexide alone significantly increased fibronectin and collagen type III synthesis in a dose-dependent manner in MMC and this increase was further enhanced in the presence of 30 mM D-glucose. Sulodexide showed a dose-dependent inhibition of 30 mM D-glucose-induced PKC-βII and ERK phosphorylation, but had no effect on PKC-α or PKC-βI phosphorylation.

Conclusions

Our data demonstrated that while sulodexide treatment reduced proteinuria and improved renal function, it had differential effects on signaling pathways and matrix protein synthesis in the kidney of C57BL/6 mice with DN.  相似文献   

13.

Objectives

The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling.

Methods

Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy.

Results

Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts.

Conclusion

This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.  相似文献   

14.
Diabetic nephropathy (DN) is characterized by inflammation of renal tissue. Glomerular endothelial cells (GEnCs) play an important role in inflammation and protein leakage in urine in DN patients. Chemerin and its receptor ChemR23 are inducers of inflammation. The aim of this study was to investigate the function of chemerin/ChemR23 in GEnCs of DN patients. Immunohistochemical staining and qRT‐PCR were used to measure the expression of chemerin, ChemR23 and inflammatory factors in renal tissues of DN patients. Db/db mice were used as animal model. ChemR23 of DN mice was knocked down by injecting LV3‐shRNA into tail vein. Inflammation, physiological and pathological changes in each group was measured. GEnCs were cultured as an in vitro model to study potential signalling pathways. Results showed that expression of chemerin, ChemR23 and inflammatory factors increased in DN patients and mice. LV3‐shRNA alleviated renal damage and inflammation in DN mice. GEnCs stimulated by glucose showed increased chemerin, ChemR23 and inflammatory factors and decreased endothelial marker CD31. Both LV3‐shRNA and SB203580 (p38 MAPK inhibitor) attenuated chemerin‐induced inflammation and injury in GEnCs. Taken together, chemerin/ChemR23 axis played an important role in endothelial injury and inflammation in DN via the p38 MAPK signalling pathway. Suppression of ChemR23 alleviated DN damage.  相似文献   

15.

Background

Diabetic nephropathy (DN) has been recognized as the leading cause of end-stage renal disease. Resveratrol (RSV), a polyphenolic compound, has been indicated to possess an insulin-like property in diabetes. In the present study, we aimed to investigate the renoprotective effects of RSV and delineate its underlying mechanism in early-stage DN.

Methods

The protective effects of RSV on DN were evaluated in streptozotocin (STZ)-induced diabetic rats.

Results

The plasma glucose, creatinine, and blood urea nitrogen were significantly elevated in STZ-induced diabetic rats. RSV treatment markedly ameliorated hyperglycemia and renal dysfunction in STZ-induced diabetic rats. The diabetes-induced superoxide anion and protein carbonyl levels were also significantly attenuated in RSV-treated diabetic kidney. The AMPK protein phosphorylation and expression levels were remarkably reduced in diabetic renal tissues. In contrast, RSV treatment significantly rescued the AMPK protein expression and phosphorylation compared to non-treated diabetic group. Additionally, hyperglycemia markedly enhanced renal production of proinflammatory cytokine IL-1β. RSV reduced IL-1β but increased TNF-α and IL-6 levels in the diabetic kidneys.

Conclusions

Our findings suggest that RSV protects against oxidative stress, exhibits concurrent proinflammation and anti-inflammation, and up-regulates AMPK expression and activation, which may contribute to its beneficial effects on the early stage of DN.  相似文献   

16.

Background

Pharmacological inhibition of arginase and remote ischemic perconditioning (RIPerc) are known to protect the heart against ischemia/reperfusion (IR) injury.

Purpose

The objective of this study was to investigate whether (1) peroxynitrite-mediated RhoA/Rho associated kinase (ROCK) signaling pathway contributes to arginase upregulation following myocardial IR; (2) the inhibition of this pathway is involved as a cardioprotective mechanism of remote ischemic perconditioning and (3) the influence of diabetes on these mechanisms.

Methods

Anesthetized rats were subjected to 30 min left coronary artery ligation followed by 2 h reperfusion and included in two protocols. In protocol 1 rats were randomized to 1) control IR, 2) RIPerc induced by bilateral femoral artery occlusion for 15 min during myocardial ischemia, 3) RIPerc and administration of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), 4) administration of the ROCK inhibitor hydroxyfasudil or 5) the peroxynitrite decomposition catalyst FeTPPS. In protocol 2 non-diabetic and type 1 diabetic rats were randomosed to IR or RIPerc as described above.

Results

Infarct size was significantly reduced in rats treated with FeTPPS, hydroxyfasudil and RIPerc compared to controls (P<0.001). FeTPPS attenuated both ROCK and arginase activity (P<0.001 vs. control). Similarly, RIPerc reduced arginase and ROCK activity, peroxynitrite formation and enhanced phospho-eNOS expression (P<0.05 vs. control). The cardioprotective effect of RIPerc was abolished by L-NMMA. The protective effect of RIPerc and its associated changes in arginase and ROCK activity were abolished in diabetes.

Conclusion

Arginase is activated by peroxynitrite/ROCK signaling cascade in myocardial IR. RIPerc protects against IR injury via a mechanism involving inhibition of this pathway and enhanced eNOS activation. The beneficial effect and associated molecular changes of RIPerc is abolished in type 1 diabetes.  相似文献   

17.

Background

Using fatty acids (FAs) exclusively for ATP generation was reported to contribute to the development of diabetic cardiomyopathy. We studied the role of substrate metabolism related genes in the heart of the diabetes to find out a novel therapeutic target for diabetic cardiomyopathy.

Methods and Results

By microarray analysis of metabolic gene expression, acyl-CoA thioesterase 1 (acot1) was clearly upregulated in the myocardia of db/db mice, compared with normal control C57BL/Ks. Therefore, gain-of-function and loss-of-function approaches were employed in db/db mice to investigate the functions of ACOT1 in oxidative stress, mitochondrial dysfunction and heart function. We found that in the hearts of db/db mice which overexpressed ACOT1, H2O2 and malondialdehyde (MDA) were reduced, the activities of ATPases in mitochondria associated with mitochondrial function were promoted, the expression of uncoupling protein 3 (UCP3) contributing to oxygen wastage for noncontractile purposes was decreased, and cardiac dysfunction was attenuated, as determined by both hemodynamic and echocardiographic detections. Consistently, ACOT1 deficiency had opposite effects, which accelerated the cardiac damage induced by diabetes. Notably, by real-time PCR, we found that overexpression of ACOT1 in diabetic heart repressed the peroxisome proliferator-activated receptor alpha/PPARγ coactivator 1α (PPARα/PGC1α) signaling, as shown by decreased expression of PGC1α and the downstream genes involved in FAs use.

Conclusion

Our results demonstrated that ACOT1 played a crucial protective role in diabetic heart via PPARα/PGC1α signaling.  相似文献   

18.
Chen  Qiangtang  Wu  Yu  Yu  Yachun  Wei  Junxiang  Huang  Wen 《Molecular and cellular biochemistry》2021,476(5):2159-2170

HIV-1 transactivator protein (Tat) induces tight junction (TJ) dysfunction and amyloid-beta (Aβ) clearance dysfunction, contributing to the development and progression of HIV-1-associated neurocognitive disorder (HAND). The Rho/ROCK signaling pathway has protective effects on neurodegenerative disease. However, the underlying mechanisms of whether Rho/ROCK protects against HIV-1 Tat-caused dysfunction of TJ and neprilysin (NEP)/Aβ transfer receptor expression have not been elucidated. C57BL/6 mice were administered sterile saline (i.p., 100 μL) or Rho-kinase inhibitor hydroxyfasudil (HF) (i.p., 10 mg/kg) or HIV-1 Tat (i.v., 100 μg/kg) or HF 30 min before being exposed to HIV-1 Tat once a day for seven consecutive days. Evans Blue (EB) leakage was detected via spectrophotometer and brain slides in mouse brains. The protein and mRNA levels of zonula occludens-1 (ZO-1), occludin, NEP, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in mouse brain microvessels were, respectively, analyzed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Exposure of the mice to HIV-1 Tat increased the amount of EB leakage, EB fluorescence intensity, blood–brain barrier (BBB) permeability, as well as the RAGE protein and mRNA levels, and decreased the protein and mRNA levels of ZO-1, occludin, NEP, and LRP1 in mouse brain microvessels. However, these effects were weakened by Rho-kinase inhibitor HF. Taken together, these results provide information that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-induced dysfunction of TJ and NEP/Aβ transfer receptor expression in the C57BL/6 mouse brain. These findings shed some light on potentiality of inhibiting Rho/Rock signaling pathway in handling HAND.

  相似文献   

19.
20.

Background

Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice.

Methods

Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation.

Results

Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice.

Conclusions

Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号