首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
2.
3.
The genome of influenza A viruses comprises eight negative-strand RNA segments. Although all eight segments must be present in cells for efficient viral replication, the mechanism(s) by which these viral RNA (vRNA) segments are incorporated into virions is not fully understood. We recently found that sequences at both ends of the coding regions of the HA, NA, and NS vRNA segments of A/WSN/33 play important roles in the incorporation of these vRNAs into virions. In order to similarly identify the regions of the PB2, PB1, and PA vRNAs of this strain that are critical for their incorporation, we generated a series of mutant vRNAs that possessed the green fluorescent protein gene flanked by portions of the coding and noncoding regions of the respective segments. For all three polymerase segments, deletions at the ends of their coding regions decreased their virion incorporation efficiencies. More importantly, these regions not only affected the incorporation of the segment in which they reside, but were also important for the incorporation of other segments. This effect was most prominent with the PB2 vRNA. These findings suggest a hierarchy among vRNA segments for virion incorporation and may imply intersegment association of vRNAs during virus assembly.  相似文献   

4.
At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3' end of the coding region and 80 nucleotides at the 5' end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.  相似文献   

5.
Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process.  相似文献   

6.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   

7.
Short synthetic influenza virus-like RNAs derived from influenza virus promoter sequences were examined for their ability to stimulate the endonuclease activity of recombinant influenza virus polymerase complexes in vitro, an activity that is required for the cap-snatching activity of primers from host pre-mRNA. An extensive set of point mutants of the 5' arm of the influenza A virus viral RNA (vRNA) was constructed to determine the cis-acting elements which influenced endonuclease activity. Activity was found to be dependent on three features of the conserved vRNA termini: (i) the presence of the 5' hairpin loop structure, (ii) the identity of residues at positions 5 and 10 bases from the 5' terminus, and (iii) the presence of base pair interactions between the 5' and 3' segment ends. Further experiments discounted a role for the vRNA U track in endonuclease activation. This study represents the first mutagenic analysis of the influenza virus promoter with regard to endonuclease activity.  相似文献   

8.
Reassortment of influenza viral RNA (vRNA) segments in co-infected cells can lead to the emergence of viruses with pandemic potential. Replication of influenza vRNA occurs in the nucleus of infected cells, while progeny virions bud from the plasma membrane. However, the intracellular mechanics of vRNA assembly into progeny virions is not well understood. Here we used recent advances in microscopy to explore vRNA assembly and transport during a productive infection. We visualized four distinct vRNA segments within a single cell using fluorescent in situ hybridization (FISH) and observed that foci containing more than one vRNA segment were found at the external nuclear periphery, suggesting that vRNA segments are not exported to the cytoplasm individually. Although many cytoplasmic foci contain multiple vRNA segments, not all vRNA species are present in every focus, indicating that assembly of all eight vRNA segments does not occur prior to export from the nucleus. To extend the observations made in fixed cells, we used a virus that encodes GFP fused to the viral polymerase acidic (PA) protein (WSN PA-GFP) to explore the dynamics of vRNA assembly in live cells during a productive infection. Since WSN PA-GFP colocalizes with viral nucleoprotein and influenza vRNA segments, we used it as a surrogate for visualizing vRNA transport in 3D and at high speed by inverted selective-plane illumination microscopy. We observed cytoplasmic PA-GFP foci colocalizing and traveling together en route to the plasma membrane. Our data strongly support a model in which vRNA segments are exported from the nucleus as complexes that assemble en route to the plasma membrane through dynamic colocalization events in the cytoplasm.  相似文献   

9.
10.
The viral RNA (vRNA) genome of influenza A virus is replicated in the nucleus, exported to the cytoplasm as ribonucleoproteins (RNPs), and trafficked to the plasma membrane through uncertain means. Using fluorescent in situ hybridization to detect vRNA as well as the live cell imaging of fluorescently labeled RNPs, we show that an early event in vRNA cytoplasmic trafficking involves accumulation near the microtubule organizing center in multiple cell types and viral strains. Here, RNPs colocalized with Rab11, a pericentriolar recycling endosome marker. Cytoplasmic RNP localization was perturbed by inhibitors of vesicular trafficking, microtubules, or the short interfering RNA-mediated depletion of Rab11. Green fluorescent protein (GFP)-tagged RNPs in living cells demonstrated rapid, bidirectional, and saltatory movement, which is characteristic of microtubule-based transport, and also cotrafficked with fluorescent Rab11. Coprecipitation experiments showed an interaction between RNPs and the GTP-bound form of Rab11, potentially mediated via the PB2 subunit of the polymerase. We propose that influenza virus RNPs are routed from the nucleus to the pericentriolar recycling endosome (RE), where they access a Rab11-dependent vesicular transport pathway to the cell periphery.  相似文献   

11.
Dynamics of filamentous viral RNPs prior to egress   总被引:1,自引:1,他引:0  
The final step in the maturation of paramyxoviruses, orthomyxoviruses and viruses of several other families, entails the budding of the viral nucleocapsid through the plasma membrane of the host cell. Many medically important viruses, such as influenza, parainfluenza, respiratory syncytial virus (RSV) and Ebola, can form filamentous particles when budding. Although filamentous virions have been previously studied, details of how viral filaments bud from the plasma membrane remain largely unknown. Using molecular beacon (MB)-fluorescent probes to image the viral genomic RNA (vRNA) of human RSV (hRSV) in live Vero cells, the dynamics of assembled viral filaments was observed to consist of three primary types of motion prior to egress from the plasma membrane: (i) filament projection and rotation, (ii) migration and (iii) non-directed motion. In addition, from information gained by imaging the 3D distribution of cellular vRNA, observing and characterizing vRNA dynamics, imaging vRNA/Myosin Va colocalization, and studying the effects of cytochalasin D (actin depolymerizing agent) exposure, a model for filamentous virion egress is presented.  相似文献   

12.
13.
Many viruses exploit cellular polarity to constrain the assembly and release of progeny virions to a desired surface. Influenza virus particles are released only from the apical surface of epithelial cells and this polarization is partly owing to specific targeting of the viral membrane proteins to the apical plasma membrane. The RNA genome of the virus is transcribed and replicated in the nucleus, necessitating nuclear export of the individual ribonucleoprotein (RNP) segments before they can be incorporated into budding virus particles. We show that the process of polarized virus assembly begins in the nucleus with the RNPs adopting a novel asymmetric distribution at the inner nuclear membrane prior to their export to the cytoplasm. The viral nucleoprotein, the major protein component of RNPs, displays the same polarized intranuclear distribution in the absence of other influenza virus components, suggesting the existence of a hitherto unrecognized polarity within the mammalian cell nucleus.  相似文献   

14.
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common 'transition zone' located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5' region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.  相似文献   

15.
16.
The genome of influenza A virus is organized into eight ribonucleoprotein complexes (RNPs), each containing one RNA polymerase complex. This RNA polymerase has also been found non-associated to RNPs and is possibly involved in distinct functions in the infection cycle. We have expressed the virus RNA polymerase complex by co-tranfection of the PB1, PB2 and PA genes in mammalian cells and the heterotrimer was purified by the TAP tag procedure. Its 3D structure was determined by electron microscopy and single-particle image processing. The model obtained resembles the structure previously reported for the polymerase complex associated to viral RNPs but appears to be in a more open conformation. Detailed model comparison indicated that specific areas of the complex show important conformational changes as compared to the structure for the RNP-associated polymerase, particularly in regions known to interact with the adjacent NP monomers in the RNP. Also, the PB2 subunit seems to undergo a substantial displacement as a result of the association of the polymerase to RNPs. The structural model presented suggests that a core conformation of the polymerase in solution exists but the interaction with other partners, such as proteins or RNA, will trigger distinct conformational changes to activate new functional properties.  相似文献   

17.
Influenza virus enters host cells by endocytosis. The low pH of endosomes triggers conformational changes in hemagglutinin (HA) that mediate fusion of the viral and endosomal membranes. We have used cryo-electron tomography to visualize influenza A virus at pH 4.9, a condition known to induce fusogenicity. After 30 min, when all virions are in the postfusion state, dramatic changes in morphology are apparent: elongated particles are no longer observed, larger particles representing fused virions appear, the HA spikes become conspicuously disorganized, a layer of M1 matrix protein is no longer resolved on most virions, and the ribonucleoprotein complexes (RNPs) coagulate on the interior surface of the virion. To probe for intermediate states, preparations were imaged after 5 min at pH 4.9. These virions could be classified according to their glycoprotein arrays (organized or disorganized) and whether or not they have a resolved M1 layer. Employing subtomogram averaging, we found, in addition to the neutral-pH state of HA, two intermediate conformations that appear to reflect an outwards movement of the fusion peptide and rearrangement of the HA1 subunits, respectively. These changes are reversible. The tomograms also document pH-induced changes affecting the M1 layer that appear to render the envelope more pliable and hence conducive to fusion. However, it appears desirable for productive infection that fusion should proceed before the RNPs become coagulated with matrix protein, as eventually happens at low pH.  相似文献   

18.
19.
M L Li  B C Ramirez    R M Krug 《The EMBO journal》1998,17(19):5844-5852
The capped RNA primers required for the initiation of influenza virus mRNA synthesis are produced by the viral polymerase itself, which consists of three proteins PB1, PB2 and PA. Production of primers is activated only when the 5'- and 3'-terminal sequences of virion RNA (vRNA) bind sequentially to the polymerase, indicating that vRNA molecules function not only as templates for mRNA synthesis but also as essential cofactors which activate catalytic functions. Using thio U-substituted RNA and UV crosslinking, we demonstrate that the 5' and 3' sequences of vRNA bind to different amino acid sequences in the same protein subunit, the PB1 protein. Mutagenesis experiments proved that these two amino acid sequences constitute the functional RNA-binding sites. The 5' sequence of vRNA binds to an amino acid sequence centered around two arginine residues at positions 571 and 572, causing an allosteric alteration which activates two new functions of the polymerase complex. In addition to the PB2 protein subunit acquiring the ability to bind 5'-capped ends of RNAs, the PB1 protein itself acquires the ability to bind the 3' sequence of vRNA, via a ribonucleoprotein 1 (RNP1)-like motif, amino acids 249-256, which contains two phenylalanine residues required for binding. Binding to this site induces a second allosteric alteration which results in the activation of the endonuclease that produces the capped RNA primers needed for mRNA synthesis. Hence, the PB1 protein plays a central role in the catalytic activity of the viral polymerase, not only in the catalysis of RNA-chain elongation but also in the activation of the enzyme activities that produce capped RNA primers.  相似文献   

20.
Rao P  Yuan W  Krug RM 《The EMBO journal》2003,22(5):1188-1198
In viral cap-snatching, the endonuclease intrinsic to the viral polymerase cleaves cellular capped RNAs to generate capped fragments that are primers for viral mRNA synthesis. Here we demonstrate that the influenza viral polymerase, which is assembled in human cells using recombinant proteins, effectively uses only CA-terminated capped fragments as primers for viral mRNA synthesis in vitro. Thus we provide the first in vitro system that mirrors the cap-snatching process occurring in vivo during virus infection. Further, we demonstrate that when a capped RNA substrate contains a CA cleavage site, the functions of virion RNA (vRNA) differ from those previously described: the 5' terminal sequence of vRNA alone is sufficient for endonuclease activation, and the 3' terminal sequence of vRNA functions solely as a template for mRNA synthesis. Consequently, we are able to identify the vRNA sequences that are required for each of these two separable functions. We present a new model for the influenza virus cap-snatching mechanism, which we postulate is a paradigm for the cap-snatching mechanisms of other segmented, negative-strand and ambisense RNA viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号