共查询到20条相似文献,搜索用时 15 毫秒
1.
FANCD2 is a product of one of the genes associated with Fanconi anemia (FA), a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex) and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL) repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2) mutant harboring the Leu234 to Arg (L234R) substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2−/− DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation. 相似文献
2.
FANCI and FANCD2 form a complex, and play essential roles in the repair of interstrand DNA crosslinks (ICLs) by the Fanconi anemia (FA) pathway. FANCD2 is monoubiquitylated by the FA core complex, composed of 10 FA proteins including FANCL as the catalytic E3 subunit. FANCD2 monoubiquitylation can be reconstituted with purified minimal components, such as FANCI, E1, UBE2T (E2) and FANCL (E3) in vitro; however, its efficiency is quite low as compared to the in vivo monoubiquitylation of FANCD2. In this study, we found that various forms of DNA, such as single-stranded, double-stranded and branched DNA, robustly stimulated the FANCD2 monoubiquitylation in vitro up to a level comparable to its in vivo monoubiquitylation. This stimulation of the FANCD2 monoubiquitylation strictly required FANCI, suggesting that FANCD2 monoubiquitylation may occur in the FANCI-FANCD2 complex. A FANCI mutant that was defective in DNA binding was also significantly defective in FANCD2 monoubiquitylation in vitro. In the presence of 5' flapped DNA, a DNA substrate mimicking the arrested replication fork, about 70% of the input FANCD2 was monoubiquitylated, while less than 1% FANCD2 monoubiquitylation was observed in the absence of the DNA. Therefore, DNA may be the unidentified factor required for proper FANCD2 monoubiquitylation. 相似文献
3.
Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair 总被引:10,自引:0,他引:10
Smogorzewska A Matsuoka S Vinciguerra P McDonald ER Hurov KE Luo J Ballif BA Gygi SP Hofmann K D'Andrea AD Elledge SJ 《Cell》2007,129(2):289-301
Fanconi anemia (FA) is a developmental and cancer-predisposition syndrome caused by mutations in genes controlling DNA interstrand crosslink repair. Several FA proteins form a ubiquitin ligase that controls monoubiquitination of the FANCD2 protein in an ATR-dependent manner. Here we describe the FA protein FANCI, identified as an ATM/ATR kinase substrate required for resistance to mitomycin C. FANCI shares sequence similarity with FANCD2, likely evolving from a common ancestral gene. The FANCI protein associates with FANCD2 and, together, as the FANCI-FANCD2 (ID) complex, localize to chromatin in response to DNA damage. Like FANCD2, FANCI is monoubiquitinated and unexpectedly, ubiquitination of each protein is important for the maintenance of ubiquitin on the other, indicating the existence of a dual ubiquitin-locking mechanism required for ID complex function. Mutation in FANCI is responsible for loss of a functional FA pathway in a patient with Fanconi anemia complementation group I. 相似文献
4.
Xiaoyong Chen James B. Wilson Patricia McChesney Stacy A. Williams Youngho Kwon Simonne Longerich Andrew S. Marriott Patrick Sung Nigel J. Jones Gary M. Kupfer 《The Journal of biological chemistry》2014,289(37):25774-25782
Fanconi anemia is a genetic disease resulting in bone marrow failure, birth defects, and cancer that is thought to encompass a defect in maintenance of genomic stability. Mutations in 16 genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, and Q) have been identified in patients, with the Fanconi anemia subtype J (FA-J) resulting from homozygous mutations in the FANCJ gene. Here, we describe the direct interaction of FANCD2 with FANCJ. We demonstrate the interaction of FANCD2 and FANCJ in vivo and in vitro by immunoprecipitation in crude cell lysates and from fractions after gel filtration and with baculovirally expressed proteins. Mutation of the monoubiquitination site of FANCD2 (K561R) preserves interaction with FANCJ constitutively in a manner that impedes proper chromatin localization of FANCJ. FANCJ is necessary for FANCD2 chromatin loading and focus formation in response to mitomycin C treatment. Our results suggest not only that FANCD2 regulates FANCJ chromatin localization but also that FANCJ is necessary for efficient loading of FANCD2 onto chromatin following DNA damage caused by mitomycin C treatment. 相似文献
5.
Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2-FANCI complex versus the monomeric proteins are. We show that the FANCD2-FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2-FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to-and independently of-FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase. 相似文献
6.
Fenghua Yuan Jimmy El Hokayem Wen Zhou Yanbin Zhang 《The Journal of biological chemistry》2009,284(36):24443-24452
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.Fanconi anemia (FA)3 is a genetic disorder characterized by chromosome instability, predisposition to cancer, hypersensitivity to DNA cross-linking agents, developmental abnormalities, and bone marrow failure (1–9). There are at least 13 distinct FA complementation groups, each of which is associated with an identified gene (2, 9, 10). Eight of them are components of the FA core complex (FANC A, B, C, E, F, G, L, and M) that is epistatic to the monoubiquitination of both FANCI and FANCD2, a key event to initiate interstrand cross-link (ICL) repair (2, 9, 11). Downstream of or parallel to the FANCI and FANCD2 monoubiquitination are the proteins involved in double strand break repair and breast cancer susceptibility (i.e. FANCD1/BRCA2, FANCJ/BRIP1, and FANCN/PALB2) (2, 9).FANCI is the most recently identified FA gene (11–13). FANCI protein is believed to form a FANCI-FANCD2 (ID) complex with FANCD2, because they co-immunoprecipitate with each other from cell lysates and their stabilities are interdependent of each other (9, 11, 13). FANCI and FANCD2 are paralogs to each other, since they share sequence homology and co-evolve in the same species (11). Both FANCI and FANCD2 can be phosphorylated by ATR/ATM (ataxia telangiectasia and Rad3-related/ataxia telangiectasia-mutated) kinases under genotoxic stress (11, 14, 15). The phosphorylation of FANCI seems to function as a molecular switch to turn on the FA repair pathway (16). The monoubiquitination of FANCD2 at lysine 561 plays a critical role in cellular resistance to DNA cross-linking agents and is required for FANCD2 to form damage-induced foci with BRCA1, BRCA2, RAD51, FANCJ, FANCN, and γ-H2AX on chromatin during S phase of the cell cycle (17–25). In response to DNA damage or replication stress, FANCI is also monoubiquitinated at lysine 523 and recruited to the DNA repair nuclear foci (11, 13). The monoubiquitination of both FANCI and FANCD2 depends on the FA core complex (11, 13, 26), and the ubiquitination of FANCI relies on the FANCD2 monoubiquitination (2, 11). In an in vitro minimally reconstituted system, FANCI enhances FANCD2 monoubiquitination and increases its specificity toward the in vivo ubiquitination site (27).FANCI is a leucine-rich peptide (14.8% of leucine residues) with limited sequence information to indicate which processes it might be involved in. Besides the monoubiquitination site Lys523 and the putative nuclear localization signals (Fig. 1A), FANCI contains both ARM (armadillo) repeats and a conserved C-terminal EDGE motif as FANCD2 does (11, 28). The EDGE sequence in FANCD2 is not required for monoubiquitination but is required for mitomycin C (MMC) sensitivity (28). The ARM repeats form α-α superhelix folds and are involved in mediating protein-protein interactions (11, 29). In addition, FANCI, at its N terminus, contains a leucine zipper domain (aa 130–151) that could be involved in mediating protein-protein or protein-DNA interactions (Fig. 1A) (30–33). FANCD2, the paralog of FANCI, was reported to bind to double strand DNA ends and Holliday junctions (34).Open in a separate windowFIGURE 1.Purified human FANCI binds to DNA promiscuously. A, schematic diagram of predicted FANCI motifs and mutagenesis strategy to define the DNA binding domain. The ranges of numbers indicate how FANCI was truncated (e.g. 801–1328 represents FANCI-(801–1328)). NLS, predicted nuclear localization signal (aa 779–795 and 1323–1328); K523, lysine 523, the monoubiquitination site. The leucine zipper (orange bars, aa 130–151), ARM repeats (green bars), and EDGE motif (blue bars) are indicated. Red bars with a slash indicate the point mutations shown on the left. B, SDS-PAGE of the purified proteins stained with Coomassie Brilliant Blue R-250. R1285Q and D1301A are two point mutants of FANCI. All FANCI variants are tagged by hexahistidine. FANCD2 is in its native form. Protein markers in kilodaltons are indicated. C, titration of WT-FANCI for the DNA binding activity. Diagrams of the DNA substrates are shown at the top of each set of reactions. *, 32P-labeled 5′-end. HJ, Holliday junction. Concentrations of FANCI were 0, 20, 40, 60, and 80 nm (ascending triangles). The substrate concentration was 1 nm. Protein-DNA complex is indicated by an arrow. D, supershift assay. 1 nm of ssDNA was incubated with PBS (lane 1), 80 nm FANCI alone (lane 2), and 80 nm FANCI preincubated with a specific FANCI antibody (lane 3) in the condition described under “Experimental Procedures.”In order to delineate the function of FANCI protein, we purified the recombinant FANCI from the baculovirus expression system. In this study, we report the DNA binding activity of FANCI. Unlike FANCD2, FANCI binds to different DNA structures, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), 5′-tailed, 3′-tailed, splayed arm, 5′-flap, 3′-flap, static fork, and Holliday junction with preference toward branched structures in the presence of FANCD2. Our data suggest that the dynamic DNA binding activity of FANCI and the preferential recognition of branched structures by the ID complex are likely to be the mechanisms to initiate downstream repair events. 相似文献
7.
Maria Castella Celine Jacquemont Elizabeth L. Thompson Jung Eun Yeo Ronald S. Cheung Jen-Wei Huang Alexandra Sobeck Eric A. Hendrickson Toshiyasu Taniguchi 《PLoS genetics》2015,11(10)
The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway. 相似文献
8.
Indrajit Chaudhury Archana Sareen Maya Raghunandan Alexandra Sobeck 《Nucleic acids research》2013,41(13):6444-6459
Fanconi Anemia (FA) and Bloom Syndrome share overlapping phenotypes including spontaneous chromosomal abnormalities and increased cancer predisposition. The FA protein pathway comprises an upstream core complex that mediates recruitment of two central players, FANCD2 and FANCI, to sites of stalled replication forks. Successful fork recovery depends on the Bloom’s helicase BLM that participates in a larger protein complex (‘BLMcx’) containing topoisomerase III alpha, RMI1, RMI2 and replication protein A. We show that FANCD2 is an essential regulator of BLMcx functions: it maintains BLM protein stability and is crucial for complete BLMcx assembly; moreover, it recruits BLMcx to replicating chromatin during normal S-phase and mediates phosphorylation of BLMcx members in response to DNA damage. During replication stress, FANCD2 and BLM cooperate to promote restart of stalled replication forks while suppressing firing of new replication origins. In contrast, FANCI is dispensable for FANCD2-dependent BLMcx regulation, demonstrating functional separation of FANCD2 from FANCI. 相似文献
9.
To initiate infection, herpesviruses must navigate to and transport their genomes across the nuclear pore. VP1-2 is a large structural protein of the virion that is conserved in all herpesviruses and plays multiple essential roles in virus replication, including roles in early entry. VP1-2 contains an N-terminal basic motif which functions as an efficient nuclear localization signal (NLS). In this study, we constructed a mutant HSV strain, K.VP1-2ΔNLS, which contains a 7-residue deletion of the core NLS at position 475. This mutant fails to spread in normal cells but can be propagated in complementing cell lines. Electron microscopy (EM) analysis of infection in noncomplementing cells demonstrated capsid assembly, cytoplasmic envelopment, and the formation of extracellular enveloped virions. Furthermore, extracellular virions isolated from noncomplementing cells had similar profiles and abundances of structural proteins. Virions containing VP1-2ΔNLS were able to enter and be transported within cells. However, further progress of infection was prevented, with at least a 500- to 1,000-fold reduction in the efficiency of initiating gene expression compared to that in the revertant. Ultrastructural and immunofluorescence analyses revealed that the K.VP1-2ΔNLS mutant was blocked at the microtubule organizing center or immediately upstream of nuclear pore docking and prior to gene expression. These results indicate that the VP1-2 NLS is not required for the known assembly functions of the protein but is a key requirement for the early routing to the nuclear pore that is necessary for successful infection. Given its conservation, we propose that this motif may also be critical for entry of other classes of herpesviruses. 相似文献
10.
K Sato M Ishiai K Toda S Furukoshi A Osakabe H Tachiwana Y Takizawa W Kagawa H Kitao N Dohmae C Obuse H Kimura M Takata H Kurumizaka 《The EMBO journal》2012,31(17):3524-3536
Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair. 相似文献
11.
Allison Lange Laura M. McLane Ryan E. Mills Scott E. Devine Anita H. Corbett 《Traffic (Copenhagen, Denmark)》2010,11(3):311-323
Nuclear localization signals (NLSs) are amino acid sequences that target cargo proteins into the nucleus. Rigorous characterization of NLS motifs is essential to understanding and predicting pathways for nuclear import. The best‐characterized NLS is the classical NLS (cNLS), which is recognized by the cNLS receptor, importin‐α. cNLSs are conventionally defined as having one (monopartite) or two clusters of basic amino acids separated by a 9‐12 aa linker (bipartite). Motivated by the finding that Ty1 integrase, which contains an unconventional putative bipartite cNLS with a 29 aa linker, exploits the classical nuclear import machinery, we assessed the functional boundaries for linker length within a bipartite cNLS. We confirmed that the integrase cNLS is a bona fide bipartite cNLS, then carried out a systematic analysis of linker length in an obligate bipartite cNLS cargo, which revealed that some linkers longer than conventionally defined can function in nuclear import. Linker function is dependent on the sequence and likely the inherent flexibility of the linker. Subsequently, we interrogated the Saccharomyces cerevisiae proteome to identify cellular proteins containing putative long bipartite cNLSs. We experimentally confirmed that Rrp4 contains a bipartite cNLS with a 25 aa linker. Our studies show that the traditional definition of bipartite cNLSs is too restrictive and linker length can vary depending on amino acid composition. 相似文献
12.
13.
15.
Nuclear factor kappaB (NF-kappaB) represents a family of dimeric DNA binding proteins, the pleotropic form of which is a heterodimer composed of RelA and p50 subunits. The biological activity of NF-kappaB is controlled through its subcellular localization. Inactive NF-kappaB is sequestered in the cytoplasm by physical interaction with an inhibitor, IkappaBalpha. Signal-mediated IkappaBalpha degradation triggers the release and subsequent nuclear translocation of NF-kappaB. It remains unknown whether the NF-kappaB shuttling between the cytoplasm and nucleus is subjected to additional steps of regulation. In this study, we demonstrated that the RelA subunit of NF-kappaB exhibits strong cytoplasmic localization activity even in the absence of IkappaBalpha inhibition. The cytoplasmic distribution of RelA is largely mediated by a leucine-rich sequence homologous to the recently characterized nuclear export signal (NES). This putative NES is both required and sufficient to mediate cytoplasmic localization of RelA as well as that of heterologous proteins. Furthermore, the cytoplasmic distribution of RelA is sensitive to a nuclear export inhibitor, leptomycin B, suggesting that RelA undergoes continuous nuclear export. Interestingly, expression of p50 prevents the cytoplasmic expression of RelA, leading to the nuclear accumulation of both RelA and p50. Together, these results suggest that the nuclear and cytoplasmic shuttling of RelA is regulated by both an intrinsic NES-like sequence and the p50 subunit of NF-kappaB. 相似文献
16.
17.
目的 构建谷胱甘肽转硫酶(GST)与EGFP相融合的新型蛋白质示踪载体--pGST-EGFP,以用于蛋白质细胞亚定位信号序列的深入分析.方法 以质粒pEGFP-N1为骨架,融合从pGEX-2TK载体中扩增的GST编码序列,构建成pGST-EGFP融合表达质粒;再插入人工合成的已知核定位蛋白SV40的核定位序列(NLS),构建成pGST-EGFP-SV40 NLS作为阳性对照;另外,构建小分子量蛋白TNNI2在pGST-EGFP的融合表达质粒.将对照pEGFP-N1和各重组质粒分别用脂质体介导,瞬时转染HeLa细胞,荧光显微镜下观察蛋白的核定位情况.结果 单独表达的EGFP呈全细胞分布,而GST-EGFP融合蛋白只存在于细胞浆;SV40 NLS能将GST-EGFP融合蛋白带进细胞核.虽然TNNI2-EGFP融合蛋白的细胞亚定位呈现核内丰度更高的特点,但TNNI2-GST-EGFP融合蛋白仅限定于胞浆分布,提示TNNI2不能主动定位到细胞核中.结论 成功构建了蛋白质细胞亚定位示踪载体--pGST-EGFP.作为核定位信号分析系统,其对小分子蛋白细胞亚定位的示踪效果优于传统的pEGFP载体,更适用于科研工作中小分子量蛋白质核定位信号序列的研究. 相似文献
18.
19.
利用核定位信号筛选系统初步筛选小鼠胚胎核定位蛋白基因 总被引:3,自引:0,他引:3
在已建立的核定位信号 (nuclearlocalizationsignal,NLS)筛选系统的基础上 ,对这一系统进行了改进并对改进的系统进行了验证。将小鼠 1 1天胚胎cDNA文库插入改进后的筛选载体的多克隆位点 ,转化酵母宿主菌。然后将约 1 0 4 个酵母克隆接种于选择性平板上进行筛选 ,得到了 2 2个可在选择性培养基上生长的克隆。分析了其中 1 8个克隆的DNA序列 ,见到 1 3个克隆含有以正确读框融合的编码NLS的基因片段。取其中 3个克隆的插入片段与绿色荧光蛋白基因融合后在哺乳类细胞内表达 ,证明了其在哺乳类细胞中的核定位功能。研究证明 ,构建的核定位信号筛选系统 ,能够有效地从cDNA文库中筛选核定位蛋白的基因 相似文献
20.
Shigeru Kawahire Taro Tachibana Masanori Umemoto Yoshihiro Yoneda Norio Imai Masashi Saito Tohru Ichimura Saburo Omata Tsuneyoshi Horigome 《Experimental cell research》1996,222(2):385
We previously purified a nuclear localization signal binding protein, NBP60, from rat liver (1993,J. Biochem.113, 308–313). In this study, the subcellular localization of NBP60 was examined using anti-NBP60. Most NBP60 was found to be localized in the nuclear envelope fraction of rat liver obtained on cell fractionation followed by immunoblotting. Staining of the nuclei of cultured cells by the antibody was observed on immunofluorescence microscopy. NBP60 was widely detected in rat nuclear fractions prepared from other tissues and also in nuclei of cultured cells derived from other species. It was shown by immunoelectron microscopy that most NBP60 is present in the nuclear envelope and at least some of that is present on nuclear pore complexes. Although NBP60 was localized in the nuclear envelope in interphase cells, it diffused into the cytoplasm in the mitotic phase. The purified NBP60 was highly phosphorylated by a cdc2 mitotic kinase, whereas nuclear pore proteins p144, p62, p60, and p54 were not phosphorylated by the kinase directly. NBP60 was also phosphorylated by protein kinase A, calmodulin-dependent protein kinase II, and casein kinase II. The phosphorylation of NBP60 by cdc2 kinase and/or the other kinases may be related to the change in the protein's location during the mitotic phase. 相似文献