首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on pieces of experimental genetic perturbation evidence from manually reading primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for mammalian organ development.  相似文献   

2.
Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein–DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.  相似文献   

3.
The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE)-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM), experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.  相似文献   

4.
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn''t make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.  相似文献   

5.
6.
The inference of gene regulatory network (GRN) from gene expression data is an unsolved problem of great importance. This inference has been stated, though not proven, to be underdetermined implying that there could be many equivalent (indistinguishable) solutions. Motivated by this fundamental limitation, we have developed new framework and algorithm, called TRaCE, for the ensemble inference of GRNs. The ensemble corresponds to the inherent uncertainty associated with discriminating direct and indirect gene regulations from steady-state data of gene knock-out (KO) experiments. We applied TRaCE to analyze the inferability of random GRNs and the GRNs of E. coli and yeast from single- and double-gene KO experiments. The results showed that, with the exception of networks with very few edges, GRNs are typically not inferable even when the data are ideal (unbiased and noise-free). Finally, we compared the performance of TRaCE with top performing methods of DREAM4 in silico network inference challenge.  相似文献   

7.
Hu  Jialu  He  Junhao  Li  Jing  Gao  Yiqun  Zheng  Yan  Shang  Xuequn 《BMC genomics》2019,20(13):1-8
Background

To infer gene regulatory networks (GRNs) from gene-expression data is still a fundamental and challenging problem in systems biology. Several existing algorithms formulate GRNs inference as a regression problem and obtain the network with an ensemble strategy. Recent studies on data driven dynamic network construction provide us a new perspective to solve the regression problem.

Results

In this study, we propose a data driven dynamic network construction method to infer gene regulatory network (D3GRN), which transforms the regulatory relationship of each target gene into functional decomposition problem and solves each sub problem by using the Algorithm for Revealing Network Interactions (ARNI). To remedy the limitation of ARNI in constructing networks solely from the unit level, a bootstrapping and area based scoring method is taken to infer the final network. On DREAM4 and DREAM5 benchmark datasets, D3GRN performs competitively with the state-of-the-art algorithms in terms of AUPR.

Conclusions

We have proposed a novel data driven dynamic network construction method by combining ARNI with bootstrapping and area based scoring strategy. The proposed method performs well on the benchmark datasets, contributing as a competitive method to infer gene regulatory networks in a new perspective.

  相似文献   

8.
Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.  相似文献   

9.
10.
11.
12.
13.
Recent development in DNA microarray technologies has made the reconstruction of gene regulatory networks (GRNs) feasible. To infer the overall structure of a GRN, there is a need to find out how the expression of each gene can be affected by the others. Many existing approaches to reconstructing GRNs are developed to generate hypotheses about the presence or absence of interactions between genes so that laboratory experiments can be performed afterwards for verification. Since, they are not intended to be used to predict if a gene in an unseen sample has any interactions with other genes, statistical verification of the reliability of the discovered interactions can be difficult. Furthermore, since the temporal ordering of the data is not taken into consideration, the directionality of regulation cannot be established using these existing techniques. To tackle these problems, we propose a data mining technique here. This technique makes use of a probabilistic inference approach to uncover interesting dependency relationships in noisy, high-dimensional time series expression data. It is not only able to determine if a gene is dependent on another but also whether or not it is activated or inhibited. In addition, it can predict how a gene would be affected by other genes even in unseen samples. For performance evaluation, the proposed technique has been tested with real expression data. Experimental results show that it can be very effective. The discovered dependency relationships can reveal gene regulatory relationships that could be used to infer the structures of GRNs.  相似文献   

14.
Inference of gene regulatory networks (GRNs) is one of the most challenging research problems of Systems Biology. In this investigation, a new GRNs inference methodology, called Entropic Biological Score (EBS), which linearly combines the mean conditional entropy (MCE) from expression levels and a Biological Score (BS), obtained by integrating different biological data sources, is proposed. The EBS is validated with the Cell Cycle related functional annotation information, available from Munich Information Center for Protein Sequences (MIPS), and compared with some existing methods like MRNET, ARACNE, CLR and MCE for GRNs inference. For real networks, the performance of EBS, which uses the concept of integrating different data sources, is found to be superior to the aforementioned inference methods. The best results for EBS are obtained by considering the weights w1 = 0.2 and w2 = 0.8 for MCE and BS values, respectively, where approximately 40% of the inferred connections are found to be correct and significantly better than related methods. The results also indicate that expression profile is able to recover some true connections, that are not present in biological annotations, thus leading to the possibility of discovering new relations between its genes.  相似文献   

15.
Understanding how metabolic reactions, cell signaling, and developmental pathways translate the genome of an organism into its phenotype is a grand challenge in biology. Genome-wide association studies (GWAS) statistically connect genotypes to phenotypes, without any recourse to known molecular interactions, whereas a molecular biology approach directly ties gene function to phenotype through gene regulatory networks (GRNs). Using natural variation in allele-specific expression, GWAS and GRN approaches can be merged into a single framework via structural equation modeling (SEM). This approach leverages the myriad of polymorphisms in natural populations to elucidate and quantitate the molecular pathways that underlie phenotypic variation. The SEM framework can be used to quantitate a GRN, evaluate its consistency across environments or sexes, identify the differences in GRNs between species, and annotate GRNs de novo in non-model organisms.  相似文献   

16.
Mutual information (MI), a quantity describing the nonlinear dependence between two random variables, has been widely used to construct gene regulatory networks (GRNs). Despite its good performance, MI cannot separate the direct regulations from indirect ones among genes. Although the conditional mutual information (CMI) is able to identify the direct regulations, it generally underestimates the regulation strength, i.e. it may result in false negatives when inferring gene regulations. In this work, to overcome the problems, we propose a novel concept, namely conditional mutual inclusive information (CMI2), to describe the regulations between genes. Furthermore, with CMI2, we develop a new approach, namely CMI2NI (CMI2-based network inference), for reverse-engineering GRNs. In CMI2NI, CMI2 is used to quantify the mutual information between two genes given a third one through calculating the Kullback–Leibler divergence between the postulated distributions of including and excluding the edge between the two genes. The benchmark results on the GRNs from DREAM challenge as well as the SOS DNA repair network in Escherichia coli demonstrate the superior performance of CMI2NI. Specifically, even for gene expression data with small sample size, CMI2NI can not only infer the correct topology of the regulation networks but also accurately quantify the regulation strength between genes. As a case study, CMI2NI was also used to reconstruct cancer-specific GRNs using gene expression data from The Cancer Genome Atlas (TCGA). CMI2NI is freely accessible at http://www.comp-sysbio.org/cmi2ni.  相似文献   

17.
18.
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.  相似文献   

19.
Granulins (GRNs) are a family of small (~6 kDa) proteins generated by the proteolytic processing of their precursor, progranulin (PGRN), in many cell types. Both PGRN and GRNs are implicated in a plethora of biological functions, often in opposing roles to each other. Lately, GRNs have generated significant attention due to their implicated roles in neurodegenerative disorders. Despite their physiological and pathological significance, the structure‐function relationships of GRNs are poorly defined. GRNs contain 12 conserved cysteines forming six intramolecular disulfide bonds, making them rather exceptional, even among a few proteins with high disulfide bond density. Solution NMR investigations in the past have revealed a unique structure containing putative interdigitated disulfide bonds for several GRNs, but GRN‐3 was unsolvable due to its heterogeneity and disorder. In our previous report, we showed that abrogation of disulfide bonds in GRN‐3 renders the protein completely disordered (Ghag et al., Prot Eng Des Sel 2016). In this study, we report the cellular expression and biophysical analysis of fully oxidized, native GRN‐3. Our results indicate that both E. coli and human embryonic kidney (HEK) cells do not exclusively make GRN‐3 with homogenous disulfide bonds, likely due to the high cysteine density within the protein. Biophysical analysis suggests that GRN‐3 structure is dominated by irregular loops held together only by disulfide bonds, which induced remarkable thermal stability to the protein despite the lack of regular secondary structure. This unusual handshake between disulfide bonds and disorder within GRN‐3 could suggest a unique adaptation of intrinsically disordered proteins towards structural stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号