首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archaeal host cells infected by Sulfolobus turreted icosahedral virus (STIV) and Sulfolobus islandicus rod-shaped virus 2 (SIRV2) produce unusual pyramid-like structures on the cell surface prior to virus-induced cell lysis. This viral lysis process is distinct from known viral lysis processes associated with bacterial or eukaryal viruses. The STIV protein C92 and the SIRV2 protein 98 are the only viral proteins required for the formation of the pyramid lysis structures of STIV and SIRV2, respectively. Since SIRV2 and STIV have fundamentally different morphotypes and genome sequences, it is surprising that they share this lysis system. In this study, we have constructed a collection of C92/P98 chimeric proteins and tested their abilities, both in the context of virus replication and alone, to form pyramid lysis structures in S. solfataricus. The results of this study illustrate that these proteins are functionally homologous when expressed as individual chimeric proteins but not when expressed in the context of complete STIV infection.  相似文献   

2.
3.
4.
Viruses infecting hyperthermophilic archaea typically do not encode DNA polymerases, raising questions regarding their genome replication. Here, using a yeast two-hybrid approach, we have assessed interactions between proteins of Sulfolobus islandicus rod-shaped virus 2 (SIRV2) and the host-encoded proliferating cell nuclear antigen (PCNA), a key DNA replication protein in archaea. Five SIRV2 proteins were found to interact with PCNA, providing insights into the recruitment of host replisome for viral DNA replication.  相似文献   

5.
Virion release from the host cell is the final and essential step for completion of the viral life cycle and spread of virions in the environment. Although for eukaryotic and bacterial viruses the egress mechanisms are reasonably well understood, this subject has not been studied in detail for archaeal viruses until recently. Here we summarize available data on the extraordinary egress mechanism exploited by the Sulfolobus islandicus rod-shaped virus SIRV2 and the Sulfolobus turreted icosahedral virus STIV. In addition, we describe features of the virus-induced pyramidal formation, VAP, involved in this process. Being an autonomous structure different from the capsid, the VAP can be considered as a representative of a specific class of virus-coded structures which we suggest to name 'virodomes'.  相似文献   

6.
The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg2+ for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection.  相似文献   

7.
8.
Characterizing the molecular interactions of viruses in natural microbial populations offers insights into virus–host dynamics in complex ecosystems. We identify the resistance of Sulfolobus islandicus to Sulfolobus spindle-shaped virus (SSV9) conferred by chromosomal deletions of pilin genes, pilA1 and pilA2 that are individually able to complement resistance. Mutants with deletions of both pilA1 and pilA2 or the prepilin peptidase, PibD, show the reduction in the number of pilins observed in TEM and reduced surface adherence but still adsorb SSV9. The proteinaceous outer S-layer proteins, SlaA and SlaB, are not required for adsorption nor infection demonstrating that the S-layer is not the primary receptor for SSV9 surface binding. Strains lacking both pilins are resistant to a broad panel of SSVs as well as a panel of unrelated S. islandicus rod-shaped viruses (SIRVs). Unlike SSV9, we show that pilA1 or pilA2 is required for SIRV8 adsorption. In sequenced Sulfolobus strains from around the globe, one copy of each pilA1 and pilA2 is maintained and show codon-level diversification, demonstrating their importance in nature. By characterizing the molecular interactions at the initiation of infection between S. islandicus and two different types of viruses we hope to increase the understanding of virus–host interactions in the archaeal domain.  相似文献   

9.
10.
《The Journal of cell biology》1983,96(5):1248-1257
The progressive cytoskeletal alterations of frog virus 3-infected baby hamster kidney (BHK) and fathead minnow (FHM) cells were studied by immunofluorescence and electron microscopy. The virus assembly sites, which contain viral genomes and viral proteins, were detected in the cytoplasm at 4 h (FHM) or 6 h (BHK) and mature virions appeared 2 h later. When infected cells were treated with Triton X-100, the assembly sites were found in association with the cytoskeleton. In infected cells, the number of microtubules progressively decreased but a few microtubules traversing in the vicinity of the assembly sites remained intact. Early in infection, the intermediate filaments retracted from the cell periphery, delimited the forming assembly sites, and remained there throughout infection. We suggest that intermediate filaments are involved in the formation of assembly sites. In addition, the filaments either by themselves or in conjunction with microtubules may anchor the assembly sites near the nucleus. The microfilament bundles (stress fibers) disappeared with the formation of assembly sites, and late in infection many projections containing microfilaments and virus particles appeared at the cell surface. The observation suggests a role for microfilaments in virus release. Taken together, these results provide the first example of a virus-infected cell in which all three cytoskeletal filaments show profound organizational changes and suggest an active participation of the host cytoskeleton in viral functions.  相似文献   

11.
It is widely held that any given virus uses only one type of nucleic acid for genetic information storage. However, this consensus has been challenged slightly by several recent studies showing that many RNA species are present within a range of DNA viruses that include Kaposi''s sarcoma-associated herpesvirus (KSHV). RNAs extracted from purified DNA virus particles exhibit great diversity in terms of length, abundance, temporal expression, cellular localization, and coding capacity during viral infection. In addition to known RNA species, the current study showed that small regulatory RNAs were present in KSHV virions. A large number of viral and cellular microRNAs (miRNAs), as well as unusual small RNAs (usRNAs), were detected in KSHV virions by using deep sequencing. Both viral and host miRNAs detected in small RNAs extracted from KSHV virions were further shown to colocalize with KSHV virions directly by in situ hybridization (ISH)-electron microscopy (EM) (ISH-EM). Some of these miRNAs were differentially present in the host cells and KSHV virions, suggesting that they are not randomly present in KSHV virions. The virional miRNAs could be transported into host cells, and they are biologically functional during de novo viral infection. Our study revealed miRNAs and usRNAs as a novel group of components in KSHV virions.  相似文献   

12.
Theiler’s murine encephalomyelitis virus is a neurotropic murine picornavirus which replicates permissively and causes a cytopathic effect in the BHK-21 cell line. We examined the interactions between the GDVII and DA strains of Theiler’s virus and BHK-21 host cell proteins in a virus overlay assay. We observed binding of the virions to two proteins of approximately 60 kDa. These proteins were microsequenced and identified as desmin and vimentin, two main components of the intermediate filament network. The association between desmin or vimentin and virions was demonstrated by immunoprecipitation. Anti-desmin and anti-vimentin monoclonal antibodies precipitated GDVII or DA virions from extracts of infected BHK-21 cells. The intracellular distributions of virions and of the desmin and vimentin intermediate filaments of BHK-21 cells were investigated by two-color immunofluorescence confocal microscopy. Following infection, the intermediate filament network was rearranged into a shell-like structure which surrounded a viral inclusion. Finally, close contact between GDVII virus particles and 10-nm intermediate filaments was observed by electron microscopy.  相似文献   

13.
The unenveloped, stiff-rod-shaped, linear double-stranded DNA viruses SIRV1 and SIRV2 from Icelandic Sulfolobus isolates form a novel virus family, the Rudiviridae. The sizes of the genomes are 32. 3 kbp for SIRV1 and 35.8 kbp for SIRV2. The virions consist of a tube-like superhelix formed by the DNA and a single basic 15.8-kD DNA-binding protein. The tube carries a plug and three tail fibers at each end. One turn of the DNA-protein superhelix measures 4.3 nm and comprises 16.5 turns of B DNA. The linear DNA molecules appear to have covalently closed hairpin ends. The viruses are not lytic and are present in their original hosts in carrier states. Both viruses are quite stable in these carrier states. In several laboratory hosts SIRV2 was invariant, but SIRV1 formed many different variants that completely replaced the wild-type virus. Some of these variants were still variable, whereas others were stable. Up to 10% nucleotide substitution was found between corresponding genome fragments of three variants. Some variants showed deletions. Wild-type SIRV1, but not SIRV2, induces an SOS-like response in Sulfolobus. We propose that wild-type SIRV1 is unable to propagate in some hosts but surmounts this host range barrier by inducing a host response effecting extensive variation of the viral genome.  相似文献   

14.
15.
Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.  相似文献   

16.
Ultrastructure of Lymphocystis Virus   总被引:4,自引:1,他引:3       下载免费PDF全文
Lymphocystis virus obtained from bluegills (Lepomis macrochirus) was cultured in the permanent bluegill cell line BF-2 and examined by electron microscopy in ultrathin sections of cell cultures and in negative-contrast preparations from cells and from centrifuged culture medium. According to negative-contrast preparations, the icosahedral virions have an overall diameter close to but not exceeding 300 mμ. Delicate filaments seem to issue from the vertices. In collapsed virions, an ordered array of morphological units was seen. Positively contrasted virions in ultrathin sections show a shell with three dark (heavy metal-stained) layers alternating with and separated by two clear layers. The acquisition of an additional outer membrane during release from the cell, as found in African swine fever virus, was never seen. Morphologically, lymphocystis virus is considered to be closely related to Tipula iridescent virus.  相似文献   

17.

Background

Bone marrow stromal cell antigen 2 (BST-2) is a cellular factor that restricts the egress of viruses such as human immunodeficiency virus (HIV-1) from the surface of infected cells, preventing infection of new cells. BST-2 is variably expressed in most cell types, and its expression is enhanced by cytokines such as type I interferon alpha (IFN-??). In this present study, we used the beta-retrovirus, mouse mammary tumor virus (MMTV) as a model to examine the role of mouse BST-2 in host infection in vivo.

Results

By using RNA interference, we show that loss of BST-2 enhances MMTV replication in cultured mammary tumor cells and in vivo. In cultured cells, BST-2 inhibits virus accumulation in the culture medium, and co-localizes at the cell surface with virus structural proteins. Furthermore, both scanning electron micrograph (SEM) and transmission electron micrograph (TEM) show that MMTV accumulates on the surface of IFN??-stimulated cells.

Conclusions

Our data provide evidence that BST-2 restricts MMTV release from naturally infected cells and that BST-2 is an antiviral factor in vivo.  相似文献   

18.
Rhadinoviruses establish chronic infections of clinical and economic importance. Several show respiratory transmission and cause lung pathologies. We used Murid Herpesvirus-4 (MuHV-4) to understand how rhadinovirus lung infection might work. A primary epithelial or B cell infection often is assumed. MuHV-4 targeted instead alveolar macrophages, and their depletion reduced markedly host entry. While host entry was efficient, alveolar macrophages lacked heparan - an important rhadinovirus binding target - and were infected poorly ex vivo. In situ analysis revealed that virions bound initially not to macrophages but to heparan+ type 1 alveolar epithelial cells (AECs). Although epithelial cell lines endocytose MuHV-4 readily in vitro, AECs did not. Rather bound virions were acquired by macrophages; epithelial infection occurred only later. Thus, host entry was co-operative - virion binding to epithelial cells licensed macrophage infection, and this in turn licensed AEC infection. An antibody block of epithelial cell binding failed to block host entry: opsonization provided merely another route to macrophages. By contrast an antibody block of membrane fusion was effective. Therefore co-operative infection extended viral tropism beyond the normal paradigm of a target cell infected readily in vitro; and macrophage involvement in host entry required neutralization to act down-stream of cell binding.  相似文献   

19.
A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3), and few cells were coinfected by both virus variants (<0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI), the number of virions infecting a cell, were low (<1.5). Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.  相似文献   

20.
R Harson  C Grose 《Journal of virology》1995,69(8):4994-5010
The pathway of envelopment and egress of the varicella-zoster virus (VZV) and the primary site of viral production within the epidermal layer of the skin are not fully understood. There are several hypotheses to explain how the virus may receive an envelope as it travels to the surface of the monolayer. In this study, we expand earlier reports and provide a more detailed explanation of the growth of VZV in human melanoma cells. Human melanoma cells were selected because they are a malignant derivative of the melanocyte, the melanin-producing cell which originates in the neural crest. We were able to observe the cytopathic effects of syncytial formation and the pattern of egress of virions at the surfaces of infected monolayers by scanning electron microscopy and laser-scanning confocal microscopy. The egressed virions did not appear uniformly over the syncytial surface, rather they were present in elongated patterns which were designated viral highways. In order to document the pathway by which VZV travels from the host cell nucleus to the outer cell membrane, melanoma cells were infected and then processed for examination by transmission electron microscopy (TEM) at increasing intervals postinfection. At the early time points, within minutes to hours postinfection, it was not possible to localize the input virus by TEM. Thus, viral particles first observed at 24 h postinfection were considered progeny virus. On the basis of the TEM observations, the following sequence of events was considered most likely. Nucleocapsids passed through the inner nuclear membrane and acquired an envelope, after which they were seen in the endoplasmic reticulum. Enveloped virions within vacuoles derived from the endoplasmic reticulum passed into the cytoplasm. Thereafter, vacuoles containing nascent enveloped particles acquired viral glycoproteins by fusion with vesicles derived from the Golgi. The vacuoles containing virions fused with the outer plasma membrane and the particles appeared on the surface of the infected cell. Late in infection, enveloped virions were also present within the nuclei of infected cells; the most likely mechanism was retrograde flow from the perinuclear space back into the nucleus. Thus, this study suggests a role for the melanocyte in the pathogenesis of VZV infection, because all steps in viral egress can be accounted for if VZV subsumes the cellular pathways required for melanogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号