首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the infection cycle of bacteriophage Qβ was investigated. Adsorption of bacteriophage Qβ to Escherichia coli is explained in terms of a collision reaction, the rate constant of which was estimated to be 4 × 10− 10 ml/cells/min. In infected cells, approximately 130 molecules of β-subunit and 2 × 105 molecules of coat protein were translated in 15 min. Replication of Qβ RNA proceeded in 2 steps—an exponential phase until 20 min and a non-exponential phase after 30 min. Prior to the burst of infected cells, phage RNAs and coat proteins accumulated in the cells at an average of up to 2300 molecules and 5 × 105 molecules, respectively. An average of 90 infectious phage particles per infected cell was released during a single infection cycle up to 105 min.  相似文献   

2.
3.
利用PCR技术扩增大肠杆菌MS2噬菌体的外壳蛋白和成熟酶蛋白基因,将其克隆到pET32a中构建中间载体pET32a-CP。将FMDV的内部核糖体结合位点(IRES)保守序列连接到中间载体噬菌体基因的下游,构建原核表达载体pCPES。将重组质粒pCPES转化宿主菌BL21(DE3),1 mmol/L IPTG诱导表达。蔗糖密度梯度离心纯化表达产物。透射电镜观察到直径大约26 nm的圆形病毒样颗粒。检测病毒样颗粒的稳定性并进行RT-PCR鉴定。结果表明该病毒样颗粒含口蹄疫病毒IRES RNA序列,并且稳定性良好,本研究构建的病毒样颗粒可以作为RNA病毒检测时的标准品和质控品使用。  相似文献   

4.
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.  相似文献   

5.
6.
Protein III (pIII) of filamentous phage is required for both the beginning and the end of the phage life cycle. The infection starts by binding of the N-terminal N2 and N1 domains to the primary and secondary host receptors, F pilus and TolA protein, respectively, whereas the life cycle terminates by the C-terminal domain-mediated release of the membrane-anchored virion from the cell. It has been assumed that the role of the C-terminal domain of pIII in the infection is that of a tether for the receptor-binding domains N1N2 to the main body of the virion. In a poorly understood process that follows receptor binding, the virion disassembles as its protein(s) become integrated into the host inner membrane, resulting in the phage genome entry into the bacterial cytoplasm. To begin revealing the mechanism of this process, we showed that tethering the functional N1N2 receptor-binding domain to the virion via termination-incompetent C domain abolishes infection. This infection defect cannot be complemented by in trans supply of the functional C domain. Therefore, the C domain of pIII acts in concert with the receptor-binding domains to mediate the post receptor binding events in the infection. Based on these findings, we propose a model in which binding of the N1 domain to the periplasmic portion of TolA, the secondary receptor, triggers in cis a conformational change in the C domain, and that this change opens or unlocks the pIII end of the virion, allowing the entry phase of infection to proceed. To our knowledge, this is the first virus that uses the same protein domain both for the insertion into and release from the host membrane.  相似文献   

7.
The minor coat protein pIII at one end of the filamentous bacteriophage fd, mediates the infection of Escherichia coli cells displaying an F-pilus. pIII has three domains (D1, D2 and D3), terminating with a short hydrophobic segment at the C-terminal end. Domain D2 binds to the tip of F-pilus, which is followed by retraction of the pilus and penetration of the E. coli cell membrane, the latter involving an interaction between domain D1 and the TolA protein in the membrane. Surface residues on the D2 domain of pIII were replaced systematically with alanine. Mutant virions were screened for D2-pilus interaction in vivo by measuring the release of infectious virions from E. coli F(+) cells infected with the mutants. A competitive ELISA was developed to measure in vitro the ability of mutant phages to bind to purified pili. This allowed the identification of amino acid residues involved in binding to F and to EDP208 pili. These residues were found to cluster on the outer rim of the 3D structure of the D2 domain, unexpectedly identifying this as the F-pilus binding region on the pIII protein.  相似文献   

8.
    
The canonical lytic–lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms ‘pseudolysogeny’ and ‘productive or non-productive chronic infection’, and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage–host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.  相似文献   

9.
The icosahedrally symmetrized structure of bacteriophage MS2 as determined by cryo-electron microscopy (EM) reveals the presence of genomic RNA that attaches to coat-protein dimers. Earlier X-ray diffraction studies revealed similar interactions between the unique operator hairpin of the MS2 genomic RNA and the coat-protein dimer. This observation leads us to conclude that not only the operator, but also many other RNA sequences in the genome of MS2, are able to bind to the coat-protein dimer. A substantial number of potential coat-protein-dimer binding sites are present in the genome of MS2 that can account for the observed RNA densities in the EM map. Moreover, it appears that these stem-loop structures are able to bind in a similar fashion to the coat protein dimer as the wild-type operator hairpin. The EM map also shows additional density between the potential operator-binding sites, linking the RNA stem-loops together to form an icosahedral network around the 3 and 5-fold axes. This RNA network is bound to the inside of the MS2 capsid and probably influences both capsid stability and formation, supporting the idea that capsid formation and RNA packaging are intimately linked to each other.  相似文献   

10.
Many single-stranded RNA viruses self-assemble their protein containers around their genomes. The roles that the RNA plays in this assembly process have mostly been ignored, resulting in a protein-centric view of assembly that is unable to explain adequately the fidelity and speed of assembly in such viruses. Using bacteriophage MS2, we demonstrate here via a combination of mass spectrometry and kinetic modelling how viral RNA can bias assembly towards only a small number of the many possible assembly pathways, thus increasing assembly efficiency. Assembly reactions have been studied in vitro using phage coat protein dimers, the known building block of the T = 3 shell, and short RNA stem-loops based on the translational operator of the replicase cistron, a 19 nt fragment (TR). Mass spectrometry has unambiguously identified two on-pathway intermediates in such reactions that have stoichiometry consistent with formation of either a particle 3-fold or 5-fold axis. These imply that there are at least two sub-pathways to the final capsid. The flux through each pathway is controlled by the length of the RNA stem-loop triggering the assembly reaction and this effect can be understood in structural terms. The kinetics of intermediate formation have been studied and show steady-state concentrations for intermediates between starting materials and the T = 3 shell, consistent with an assembly process in which all the steps are in equilibrium. These data have been used to derive a kinetic model of the assembly reaction that in turn allows us to determine the dominant assembly pathways explicitly, and to estimate the effect of the RNA on the free energy of association between the assembling protein subunits. The results reveal that there are only a small number of dominant assembly pathways, which vary depending on the relative ratios of RNA and protein. These results suggest that the genomic RNA plays significant roles in defining the precise assembly sub-pathway followed to create the final capsid.  相似文献   

11.
    
One barrier to the construction of nanoscale devices is the ability to place materials into 2D- and 3D-ordered arrays by controlling the assembly and ordering of connections between nanomaterials. Ordered assembly of nanoscale materials may potentially be achieved using biological tools that direct specific connections between individual components. Recently, viruses were successfully employed as scaffolds for the nucleation of nanoparticles and nanowires (Mao et al., 2004); however, there is a paucity of methods for the higher order assembly of phage-templated materials. Here we describe a general strategy for the assembly of filamentous bacteriophages into long, wire-like or into tripod-like structures. To prepare the linear phage assemblies, dimeric leucine zipper protein domains, fused to the p3 and p9 proteins of M13 bacteriophage, were employed to direct the specific end-to-end self-association of the bacteriophage particles. Electron microscopy revealed that up to 90% of the phage displaying complementary leucine zipper domains formed linear multi-phage assemblies, composed of up to 30 phage in length. To prepare tripod-like assemblies, phage were engineered to express trimeric leucine zippers as p3 fusion proteins. This resulted in 3D assembly with three individual phages attached at a single point. These ordered phage structures should provide a foundation for self-assembly of virally templated nanomaterials into useful devices.  相似文献   

12.
Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically developed to analyze assembly of spherical viruses. Phage P22 procapsids are the product of the co-assembly of 420 molecules of coat protein and approximately 100-300 molecules of scaffolding protein. Scaffolding protein serves as an assembly chaperone and is not part of the final mature capsid, but is essential for proper procapsid assembly. Here we show that scaffolding protein also affects the thermodynamics of assembly, and for the first time this quantitative analysis has been performed on a virus composed of more than one type of protein subunit. Purified coat and scaffolding proteins were mixed in varying ratios in vitro to form procapsids. The reactions were allowed to reach equilibrium and the proportion of the input protein assembled into procapsids or remaining as free subunits was determined by size exclusion chromatography and SDS-PAGE. The results were used to calculate the free energy contributions for individual coat and scaffolding proteins. Each coat protein subunit was found to contribute -7.2(+/-0.1)kcal/mol and each scaffolding protein -6.1(+/-0.2)kcal/mol to the stability of the procapsid. Because each protein interacts with two or more neighbors, the pair-wise energies are even less. The weak protein interactions observed in the assembly of procapsids are likely important in the control of nucleation, since an increase in affinity between coat and scaffolding proteins can lead to kinetic traps caused by the formation of too many nuclei. In addition, we find that adjusting the molar ratio of scaffolding to coat protein can alter the assembly product. When the scaffolding protein concentration is low relative to coat protein, there is a correspondingly low yield of proper procapsids. When the relative concentration is very high, too many nuclei form, leading to kinetically trapped assembly intermediates.  相似文献   

13.
Recombinant forms of the bacteriophage MS2 and its RNA-free (empty) MS2 capsid were analyzed in solution to determine if RNA content and/or the A (or maturation) protein play a role in the global arrangement of the virus protein shell. Analysis of the (coat) protein shell of recombinant versions of MS2 that lack the A protein revealed dramatic differences compared to wild-type MS2 in solution. Specifically, A protein-deficient virus particles form a protein shell of between 31(+/-1) A and 37(+/-1) A. This is considerably thicker than the protein shell formed by either the wild-type MS2 or the RNA-free MS2 capsid, whose protein shells have a thickness of 21(+/-1) A and 25(+/-1) A, respectively. Since the A protein is known to separate from the intact MS2 protein shell after infection, the thin shell form of MS2 represents the pre-infection state, while the post-infection state is thick. Interestingly, these A protein-dependent differences in the virus protein shell are not seen using crystallography, as the crystallization process seems to artificially compact the wild-type MS2 virion. Furthermore, when the A protein is absent from the virus shell (post-infection), the process of crystallization exerts sufficient force to convert the protein shell from the post-infection (thick) state to the pre-infection (thin) conformation. In summary, the data are consistent with the idea that RNA content or amount does not affect the structure of the MS2 virus shell. Rather, the A protein influences the global arrangement of the virus coat dramatically, possibly by mediating the storage of energy or tension within the protein shell during virus assembly. This tension may later be used to eject the MS2 genomic RNA and A protein fragments into the host during infection.  相似文献   

14.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

15.
The Chlamydia pneumoniae bacteriophage was first identified in isolate AR-39. Its relevance for chlamydial biology and pathogenicity remains unknown. In this study, a collection of 36 C. pneumoniae isolates was screened and the phage was detected in eight. As the positive isolates differed by several polymorphisms, they presumably belonged to different genetic lineages. It was investigated whether different genotypes of the phage also existed and whether they could be assigned to chlamydial genotypes as evidence of coevolution. Sequencing of >3000 bp of the 4524 bp phage genome revealed complete identity to the published sequences. Thus, it was hypothesized that the genetic conservation was related to easy transmissibility of the phage between C. pneumoniae isolates. Cocultivation of phage positive and negative isolates followed by cloning and identification of different C. pneumoniae genotypes demonstrated for the first time transmissibility of the bacteriophage from one isolate to the other. These observations indicate that the phage is capable of infecting C. pneumoniae isolates of different genetic backgrounds and suggest that all C. pneumoniae strains might be susceptible. The successful in vitro infection of C. pneumoniae with the phage provides the basis for studying its pathogenetic relevance in isolates of identical genetic background and provides a potential tool for genetic manipulation of C. pneumoniae.  相似文献   

16.
Bacteriophage–host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r = 0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.  相似文献   

17.
The biomolecular mechanism that the double-stranded DNA viruses employ to insert and package their genomic DNA into a preformed procapsid is still elusive. To better characterize this process, we investigated packaging of bacteriophage phi29 DNA with structural alterations. phi29 DNA was modified in vitro by nicking at random sites with DNase I, or at specific sites with nicking enzyme N.BbvC IA. Single-strand gaps were created by expanding site-specific nicks with T4 DNA polymerase. Packaging of modified phi29 DNA was studied in a completely defined in vitro system. Nicked DNA was packaged at full genome length and with the same efficiency as untreated DNA. Nicks were not repaired during packaging. Gapped DNA was packaged only as a fragment corresponding to the DNA between the genome terminus and gap. Thus the phi29 DNA packaging machinery tolerated nicks, but stopped at gaps. The packaging motor did not require a nick-free DNA backbone, but the presence of both DNA strands, for uninterrupted packaging.  相似文献   

18.
目的: 制备热稳定性好、耐RNase攻击及可全程监控操作的核酸检测新型冠状病毒阳性质控品。方法: 分别扩增MS2噬菌体外壳蛋白CP(含PAC位点)基因以及成熟酶蛋白A基因序列(含核糖体结合位点),先后插入质粒pET28a多克隆位点不同位置,构建通用重组载体pET28a/CP-A。合成包含ORF1ab基因、N基因和E基因三个靶标的特定核酸序列,插入到重组载体pET28a/CP-A中PAC位点的下游,构建包含靶序列的重组载体pET28a/CP-A/S。通过原核表达系统表达目的蛋白,采用硫酸铵和凝胶过滤层析进行纯化,利用透射电镜和动态光散射对蛋白质进行物理表征。全能核酸酶消化形成的盔甲RNA,通过RT-PCR检测其残余核酸和热稳定性。结果: 成功构建包含MS2噬菌体外壳蛋白CP基因、成熟酶蛋白A基因和外源靶核酸的重组载体,目的蛋白在25℃、IPTG 0.3mmol /L、诱导14h时以可溶性形式得到高效表达,纯化后,得到了大小均一、直径为23~28nm的病毒样颗粒,经核酸酶消化后RT-PCR检测,颗粒溶液中几乎无核酸残余且形成了包封靶基因的盔甲RNA。加速破坏试验表明该盔甲RNA无菌过滤后可在37℃稳定保持10天。结论: 在体外,利用MS2噬菌体外壳蛋白和成熟酶蛋白自组装包封外源靶序列制备的盔甲RNA,其热稳定性好,可全程监控整个检测过程,可作为核酸检测SARS-CoV-2的定性或定量质控品。  相似文献   

19.
目的: 制备热稳定性好、耐RNase攻击及可全程监控操作的核酸检测新型冠状病毒阳性质控品。方法: 分别扩增MS2噬菌体外壳蛋白CP(含PAC位点)基因以及成熟酶蛋白A基因序列(含核糖体结合位点),先后插入质粒pET28a多克隆位点不同位置,构建通用重组载体pET28a/CP-A。合成包含ORF1ab基因、N基因和E基因三个靶标的特定核酸序列,插入到重组载体pET28a/CP-A中PAC位点的下游,构建包含靶序列的重组载体pET28a/CP-A/S。通过原核表达系统表达目的蛋白,采用硫酸铵和凝胶过滤层析进行纯化,利用透射电镜和动态光散射对蛋白质进行物理表征。全能核酸酶消化形成的盔甲RNA,通过RT-PCR检测其残余核酸和热稳定性。结果: 成功构建包含MS2噬菌体外壳蛋白CP基因、成熟酶蛋白A基因和外源靶核酸的重组载体,目的蛋白在25℃、IPTG 0.3mmol /L、诱导14h时以可溶性形式得到高效表达,纯化后,得到了大小均一、直径为23~28nm的病毒样颗粒,经核酸酶消化后RT-PCR检测,颗粒溶液中几乎无核酸残余且形成了包封靶基因的盔甲RNA。加速破坏试验表明该盔甲RNA无菌过滤后可在37℃稳定保持10天。结论: 在体外,利用MS2噬菌体外壳蛋白和成熟酶蛋白自组装包封外源靶序列制备的盔甲RNA,其热稳定性好,可全程监控整个检测过程,可作为核酸检测SARS-CoV-2的定性或定量质控品。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号