首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线粒体是持续进行分裂和融合的动态细胞器。近年来,除了线粒体代谢作用相关的研究之外,线粒体动力学也开始逐渐引起研究的关注。越来越多的研究表明,线粒体动力学与肿瘤细胞生物学行为具有相关性。线粒体分裂蛋白1(mitochondrial fission protein 1, FIS1)介导线粒体分裂复合物的组装,参与线粒体分裂,是线粒体融合分裂过程中重要的蛋白质。然而,鲜有研究揭示FIS1在人宫颈癌中的表达及其作用。本研究对比了宫颈癌组织以及癌旁组织的转录物组数据,结果显示,与癌旁组织相比,人宫颈癌组织中的FIS1 mRNA水平明显降低(P<0.01)。进一步进行宫颈癌组织FIS1高表达组与低表达组的差异基因分析,发现差异基因主要与线粒体功能相关。随后,进行FIS1过表达后HeLa细胞增殖、迁移、线粒体裂变以及ROS水平的相关分析。结果显示,过表达FIS1基因,HeLa细胞增殖及迁移能力显著降低,细胞内线粒体裂变程度加剧并且细胞内ROS水平升高。综合以上结果,FIS1在人宫颈癌细胞中表达水平较低,而过表达FIS1可促使宫颈癌细胞因线粒体动力学失衡而发生一系列生物学功能异常。因此,本研究为进一步研究FIS1在宫颈癌治疗中的作用奠定了重要基础。  相似文献   

2.
Lon protease is a multifunction protein and operates in protein quality control and stress response pathways in mitochondria. Human Lon is upregulated under oxidative and hypoxic stresses that represent the stress phenotypes of cancer. However, little literature undertakes comprehensive and detailed investigations on the tumorigenic role of Lon. Overexpression of Lon promotes cell proliferation, apoptotic resistance to stresses, and transformation. Furthermore, Lon overexpression induces the production of mitochondrial reactive oxygen species (ROS) that result from Lon-mediated upregulation of NDUFS8, a mitochondrial Fe-S protein in complex I of electron transport chain. Increased level of mitochondrial ROS promotes cell proliferation, cell survival, cell migration, and epithelial–mesenchymal transition through mitogen-activated protein kinase (MAPK) and Ras-ERK activation. Overall, the present report for the first time demonstrates the role of Lon overexpression in tumorigenesis. Lon overexpression gives an apoptotic resistance to stresses and induces mitochondrial ROS production through Complex I as signaling molecules to activate Ras and MAPK signaling, giving the survival advantages and adaptation to cancer cells. Finally, in silico and immunohistochemistry analysis showed that Lon is overexpressed specifically in various types of cancer tissue including oral cancer.  相似文献   

3.
Plexin-B1, the receptor for Sema4D, has been reported to trigger multiple and sometimes opposing cellular responses in various types of tumor cells. It has been implicated in the regulation of tumor-cell survival, proliferation, angiogenesis, invasion and metastasis. However, the plexin-B1 gene expression and its regulatory mechanism in cervical cancer remain unclear. The present study shows that plexin-B1 is over-expressed in cervical tumor tissues compared to normal cervical tissues by immunohistochemistry, Western blotting and quantitative RT-PCR. The expression of plexin-B1 is significantly associated with cervical tumor metastasis and invasion according to the analysis of the clinicopathologic data. Plexin-B1 also promotes proliferation, migration and invasion in human cervical cancer HeLa cells. We also found that the plexin-B1 levels are inversely correlated with miR-214 amounts in both cervical cancer tissues and HeLa cells. And miR-214 expression level is also associated with metastasis and invasion of cervical tumor. Furthermore, we demonstrate that plexin-B1 is inhibited by miR-214 through a miR-214 binding site within the 3'UTR of plexin-B1 in HeLa cells. Ectopic expression of miR-214 could inhibit the proliferation capacity, migration and invasion ability of HeLa cells. Our findings suggest that plexin-B1, a target of miR-214, may function as an oncogene in human cervical cancer HeLa cells.  相似文献   

4.
Mitochondria are the major organelles in sensing cellular stress and inducing the response for cell survival. Mitochondrial Lon has been identified as an important stress protein involved in regulating proliferation, metastasis, and apoptosis in cancer cells. However, the mechanism of retrograde signaling by Lon on mitochondrial DNA (mtDNA) damage remains to be elucidated. Here we report the role of Lon in the response to cisplatin-induced mtDNA damage and oxidative stress, which confers cancer cells on cisplatin resistance via modulating calcium levels in mitochondria and cytosol. First, we found that cisplatin treatment on oral cancer cells caused oxidative damage of mtDNA and induced Lon expression. Lon overexpression in cancer cells decreased while Lon knockdown sensitized the cytotoxicity towards cisplatin treatment. We further identified that cisplatin-induced Lon activates the PYK2-SRC-STAT3 pathway to stimulate Bcl-2 and IL-6 expression, leading to the cytotoxicity resistance to cisplatin. Intriguingly, we found that activation of this pathway is through an increase of intracellular calcium (Ca2+) via NCLX, a mitochondrial Na+/Ca2+ exchanger. We then verified that NCLX expression is dependent on Lon levels; Lon interacts with and activates NCLX activity. NCLX inhibition increased the level of mitochondrial calcium and sensitized the cytotoxicity to cisplatin in vitro and in vivo. In summary, mitochondrial Lon-induced cisplatin resistance is mediated by calcium release into cytosol through NCLX, which activates calcium-dependent PYK2-SRC-STAT3-IL-6 pathway. Thus, our work uncovers the novel retrograde signaling by mitochondrial Lon on resistance to cisplatin-induced mtDNA stress, indicating the potential use of Lon and NCLX inhibitors for better clinical outcomes in chemoresistant cancer patients.Subject terms: Cancer therapeutic resistance, Mitochondria, Calcium and vitamin D  相似文献   

5.
6.
Cathepsin B is a protease which is able to digest extracellular matrix. It is currently unknown whether cathepsin B plays a role in cervical cancer development and progression. With Q-PCR and Western blotting, we observed cathepsin B expression in cervical cancer cell line Hela cells. After the gene was silenced in HeLa cells with SiRNA, we confirmed that cathepsin B expressions at both mRNA and protein levels were significantly reduced. At the same time, cell proliferation, migration and invasion of the HeLa cells were significantly decreased compared to control cells. In addition, a significant regression of tumor growth in nude mice which received the siRNA targeted cathepsin B HeLa cells was observed. We further studied the expression of cathepsin B in a series of 169 clinical samples, including 56 invasive cervical squamous carcinoma, 85 CINs and 28 normal cervical tissues. It was found that cathepsin B expression in invasive carcinomas was significantly higher than that in the CINs and normal tissues (P<0.01). In addition, cathepsin B expression in the invasive carcinomas was positively correlated to tumor invasion depth and lymphatic metastasis. Our results indicate that cathepsin B may be a potential biomarker for further strategical clinical studies in cervical cancer.  相似文献   

7.
Alterations in mitochondrial structure and function are a hallmark of cancer cells compared to normal cells and thus targeting mitochondria has emerged as an novel approach to cancer therapy. The mitochondrial thioredoxin 2 (Trx2) system is critical for cell viability, but its role in cancer biology is not well understood. Recently some cationic triphenylmethanes such as brilliant green (BG) and gentian violet were shown to have antitumor and antiangiogenic activity with unknown mechanisms. Here we demonstrate that BG killed cells at nanomolar concentrations and targeted mitochondrial Trx2, which was oxidized and degraded. HeLa cells were more sensitive to BG than fibroblasts. In HeLa cells, Trx2 down-regulation by siRNA resulted in increased sensitivity to BG, whereas for fibroblasts, the same treatments had no effect. BG was observed to accumulate in mitochondria and cause a rapid and dramatic decrease in mitochondrial Trx2 protein. With a redox Western blot method, we found that treatment with BG caused oxidation of both Trx1 and Trx2, followed by release of cytochrome c and apoptosis-inducing factor from the mitochondria into the cytosol. Moreover, this treatment resulted in an elevation of the mRNA level of Lon protease, a protein quality control enzyme in the mitochondrial matrix, suggesting that the oxidized Trx2 may be degraded by Lon protease.  相似文献   

8.
It was reported that expression of the estrogen-regulated zinc transporter LIV-1 was particularly high in human cervical cancer cell line HeLa. This result prompted us to study the role that LIV-1 played in human cervical cancer. The results of real-time PCR showed that LIV-1 mRNA was significantly higher in cervical cancer in situ than in normal tissues. RNAi mediated suppression of LIV-1 in HeLa cells significantly inhibited cell proliferation, colony formation, migration, and invasive ability, but had no effect on cell apoptosis. Furthermore, LIV-1 suppression is accompanied by down-regulation of p44/42 MAPK, phospho-p44/42 MAPK, Snail and Slug expression levels. Hence, our data provide the first evidence that LIV-1 mRNA is overexpressed in cervical cancer in situ and is involved in invasion of cervical cancer cells through targeting MAPK-mediated Snail and Slug expression.  相似文献   

9.
目的:研究CELF6在乳腺癌组织与正常组织中的表达差异以及其在乳腺癌中的预后意义。方法:采用GEPIA分析乳腺癌组织与正常乳腺组织中CELF6的表达差异,免疫组化检测乳腺癌组织CELF6蛋白的表达。KM-plotter在线分析TCGA数据库中CELF6的表达差异与乳腺癌患者生存预后的关系,CCK8实验分析不同CELF6表达水平对乳腺癌细胞生长增殖的影响。结果:GEPIA在线软件分析结果显示乳腺癌CELF6表达较与正常组织显著降低(P0.001)。免疫组化检测结果显示乳腺癌患者的乳腺癌组织CELF6的阳性表达显著低于癌旁的正常组织。KM-plotter在线分析的生存曲线显示CELF6高表达的乳腺癌患者生存预后显著优于低表达者(P0.001)。CCK8实验显示敲低乳腺癌细胞MDA-MB-231中CELF6的表达,细胞增殖速度显著变快,而过表达CELF6的MDA-MB-231细胞的增殖速度减慢。结论:CELF6可能作为潜在的抑癌基因,在乳腺癌组织中低表达,与乳腺癌患者预后不良有关。  相似文献   

10.
Carbonic anhydrase IX (CA IX) has recently been validated as an antitumor/antimetastatic drug target. In this study, we examined the underlying molecular mechanisms and the anticancer activity of sulfonamide CA IX inhibitors against cervical cancer cell lines. The effects of several sulfonamides on HeLa, MDA-MB-231, HT-29 cancer cell lines, and normal cell lines (HEK-293, PNT-1A) viability were determined. The compounds showed high cytotoxic and apoptotic activities, mainly against HeLa cells overexpressing CA IX. We were also examined for intracellular reactive oxygen species (ROS) production; intra-/extracellular pH changes, for inhibition of cell proliferation, cellular mitochondrial membrane potential change and for the detection of caspase 3, 8, 9, and CA IX protein levels. Of the investigated sulfonamides, one compound was found to possess high cytotoxic and anti-proliferative effects in HeLa cells. The cytotoxic effect occurred via apoptosis, being accompanied by a return of pHe/pHi towards normal values as for other CA IX inhibitors investigated earlier.  相似文献   

11.
《Autophagy》2013,9(6):986-1003
GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.  相似文献   

12.
GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.  相似文献   

13.
A large nuclear protein of 2089 amino acids, NFBD1/MDC1 has recently been implicated in tumorigenesis and tumor growth. In this study, we investigated its expression in cervical cancers and explored its function using gene knockdown approaches. We report here that NFBD1 expression is substantial increased in 24 of 39 cases (61.5%) of cervical cancer tissues at the mRNA level and in 35 of 60 cases (58.3%) at the protein level compared with the case matched normal tissues. Tumors with higher grade of malignancy tend to have higher levels of NFBD1 expression. By infecting cells with retroviruses expressing NFBD1 shRNA, we successfully knocked down NFBD1 expression in cervical cancer cell lines HeLa, SiHa, and CaSki. NFBD1 knockdown cells display significant growth inhibition, cell cycle arrest, higher apoptotic rate, and enhanced sensitivity to adriamycin. Furthermore, NFBD1 knockdown also inhibits the growth of HeLa cells in nude mice. Western blot analyses further revealed that NFBD1 knockdown induced Bax, Puma, and Noxa while down-regulating Bcl-2; it also up-regulated cytochrome C and activated caspases 3 and 9. Therefore, the function of NFBD1 may be involved in the CDC25C-CyclinB1/CDC2 pathway at the G2/M checkpoint, and the cytochrome C/caspase 3 apoptotic pathway. Since expression of NFBD1 seems to be related to the oncogenic potential of cervical cancer, and suppression of its expression can inhibit cancer cell growth both in vitro and in vivo, NFBD1 may be a potential therapeutic target in human cervical cancer.  相似文献   

14.
SIRT3 is a key NAD+-dependent protein deacetylase in the mitochondria of mammalian cells, functioning to prevent cell aging and transformation via regulation of mitochondrial metabolic homeostasis. However, SIRT3 is also found to express in some human tumors; its role in these SIRT3-expressing tumor cells needs to be elucidated. This study demonstrated that the expression of SIRT3 was elevated in a group of gastric cancer cells compared to normal gastric epithelial cells. Although SIRT3 expression levels were increased in the gastric tumor tissues compared to the adjacent non-tumor tissues, SIRT3 positive cancer cells were more frequently detected in the intestinal type gastric cancers than the diffuse type gastric cancers, indicating that SIRT3 is linked with subtypes of gastric cancer. Overexpression of SIRT3 promoted cell proliferation and enhanced ATP generation, glucose uptake, glycogen formation, MnSOD activity and lactate production, which were inhibited by SIRT3 knockdown, indicating that SIRT3 plays a role in reprogramming the bioenergetics in gastric tumor cells. Further analysis revealed that SIRT3 interacted with and deacetylated the lactate dehydrogenase A (LDHA), a key protein in regulating anaerobic glycolysis, enhancing LDHA activity. In consistence, a cluster of glycolysis-associated genes was upregulated in the SIRT3-overexpressing gastric tumor cells. Thus, in addition to the well-documented SIRT3-mediated mitochondrial homeostasis in normal cells, SIRT3 may enhance glycolysis and cell proliferation in SIRT3-expressing cancer cells.  相似文献   

15.
REV3L, the catalytic subunit of DNA Polymerase ζ (Polζ), plays a significant role in the DNA damage tolerance mechanism of translesion synthesis (TLS). The role of REV3L in chemosensitivity of cervical cancer needs exploration. In the present study, we evaluated the expression of the Polζ protein in paraffin-embedded tissues using immunohistochemistry and found that the expression of Polζ in cervical cancer tissues was higher than that in normal tissues. We then established some cervical cancer cell lines with REV3L suppression or overexpression. Depletion of REV3L suppresses cell proliferation and colony formation of cervical cancer cells through G1 arrest, and REV3L promotes cell proliferation and colony formation of cervical cancer cells by promoting G1 phase to S phase transition. The suppression of REV3L expression enhanced the sensitivity of cervical cancer cells to cisplatin, and the overexpression of REV3L conferred resistance to cisplatin as evidenced by the alteration of apoptosis rates, and significantly expression level changes of anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia sequence 1 (Mcl-1) and B-cell lymphoma-extra large (Bcl-xl) and proapoptotic Bcl-2-associated x protein (Bax). Our data suggest that REV3L plays an important role in regulating cervical cancer cellular response to cisplatin, and thus targeting REV3L may be a promising way to alter chemosensitivity in cervical cancer patients.  相似文献   

16.
17.
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.  相似文献   

18.
Cervical cancer is a serious threat to women’s health and is the third most common malignancy in women worldwide. Recent studies indicate that the long non-coding RNA CCAT1 plays a role in the malignant behavior of many tumors. However, the role of CCAT1 in cervical cancer is still unknown. Our aim is to evaluate the expression and investigate the regulatory role and potential mechanism of CCAT1 in cervical cancer. CCAT1 expression was measured by qRT-PCR. In addition, CCK-8 assays, colony formation assays, qRT-PCR assays, Transwell assays and xenograft experiments were performed to determine the role of CCAT1 in the proliferation and invasion in cervical cancer cells. The expression of CCAT1 in the cervical cancer tissues was higher than in the adjacent normal tissues. Overexpressing CCAT1 promoted cervical cancer cell proliferation, colony formation, and invasion in vitro. Elevated CCAT1 suppressed miR-181a expression, which was accompanied by an increased expression of MMP14 and HB-EGF. In contrast, knocking down CCAT1 resulted in increased expression of miR-181a, along with decreased expression of MMP14 and HB-EGF. Thus, CCAT1 is a key oncogenic lncRNA associated with cervical cancer and plays a role in promoting cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis.  相似文献   

19.
20.
目的探讨环状RNA 0000218(circ_0000218)是否通过靶向吸附miR-1182从而影响宫颈癌HeLa细胞增殖、迁移和侵袭。方法采用实时荧光定量PCR(RT-qPCR)技术分析43例宫颈癌患者癌组织、癌旁组织中circ_0000218和miR-1182的表达水平。根据转染序列不同分为si-NC组、si-circ_0000218组、miR-NC组、miR-1182组、pcDNA组、pcDNAcirc_0000218组、si-circ_0000218+anti-miR-NC组、si-circ_0000218+anti-miR-1182组。运用细胞计数试剂盒(CCK-8)法、Transwell实验分析circ_0000218和miR-1182表达对HeLa细胞增殖、迁移和侵袭的影响。蛋白质印迹法检测Ki-67、基质金属蛋白酶2(MMP-2)和MMP9蛋白表达。双荧光素酶报告实验和RT-qPCR分析circ_0000218和miR-1182的靶向关系。癌旁组织与宫颈癌组织比较采用配对t检验,两组间比较采用独立样本t检验进行统计学分析。结果宫颈癌组织中circ_0000218表达量高于癌旁组织(4.17±0.32比1.00±0.05),而miR-1182表达量低于癌旁组织(0.33±0.03比1.00±0.05),差异具有统计学意义(P均<0.001)。与si-NC组比较,si-circ_0000218组HeLa细胞增殖活力(0.86±0.04比0.37±0.03)、迁移数量[(86.73±7.13)个比(38.52±3.19)个]和侵袭数量[(66.80±4.95)个比(26.58±2.55)个]以及Ki-67(0.57±0.05比0.18±0.02)、MMP-2(0.74±0.07比0.28±0.03)和MMP-9蛋白表达量(0.64±0.04比0.22±0.02)降低,差异有统计学意义(P均<0.001).与miR-NC组比较,miR-1182组HeLa细胞增殖活力(0.88±0.04比0.46±0.04)、迁移数量[(89.74±5.53)个比(46.63±3.79)个]和侵袭数量[(68.03±4.34)个比(34.63±3.37)个]以及Ki-67(0.59±0.04比0.24±0.02)、MMP-2(0.76±0.05比0.33±0.03)和MMP-9蛋白表达量(0.66±0.04比0.29±0.03)降低,差异有统计学意义(P均<0.001)。circ_0000218靶向负调控miR-1182表达。与si-circ_0000218+anti-miR-NC组比较,si-circ_0000218+anti-miR-1182组HeLa细胞增殖活力(0.35±0.03比0.76±0.04)、迁移数量[(35.58±3.11)个比(77.04±4.08)个]和侵袭数量[(25.44±2.29)个比(57.61±3.47)个]以及Ki-67(0.16±0.02比0.46±0.04)、MMP-2(0.26±0.02比0.65±0.04)和MMP-9蛋白表达量(0.20±0.02比0.57±0.04)升高,差异有统计学意义(P均<0.001)。结论circ_0000218通过靶向吸附miR-1182可促进宫颈癌HeLa细胞增殖、迁移和侵袭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号