共查询到20条相似文献,搜索用时 11 毫秒
1.
N. Cabezas-Llobet L. Vidal-Sancho A. Fournier J. Alberch D. Vaudry X. Xifró 《Molecular neurobiology》2018,55(11):8263-8277
Deficits in hippocampal synaptic plasticity result in cognitive impairment in Huntington’s disease (HD). Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts neuroprotective actions, mainly through the PAC1 receptor. However, the role of PACAP in cognition is poorly understood, and no data exists in the context of Huntington’s disease (HD). Here, we investigated the ability of PACAP receptor stimulation to enhance memory development in HD. First, we observed a hippocampal decline of all three PACAP receptor expressions, i.e., PAC1, VPAC1, and VPAC2, in two different HD mouse models, R6/1 and HdhQ7/Q111, from the onset of cognitive dysfunction. In hippocampal post-mortem human samples, we found a specific decrease of PAC1, without changes in VPAC1 and VPAC2 receptors. To determine whether activation of PACAP receptors could contribute to improve memory performance, we conducted daily intranasal administration of PACAP38 to R6/1 mice at the onset of cognitive impairment for seven days. We found that PACAP treatment rescued PAC1 level in R6/1 mice, promoted expression of the hippocampal brain-derived neurotrophic factor, and reduced the formation of mutant huntingtin aggregates. Furthermore, PACAP administration counteracted R6/1 mice memory deficits as analyzed by the novel object recognition test and the T-maze spontaneous alternation task. Importantly, the effect of PACAP on cognitive performance was associated with an increase of VGlut-1 and PSD95 immunolabeling in hippocampus of R6/1 mice. Taken together, these results suggest that PACAP, acting through stimulation of PAC1 receptor, may have a therapeutic potential to counteract cognitive deficits induced in HD. 相似文献
2.
Robert Nisticò Marco Pignatelli Sonia Piccinin Nicola B. Mercuri Graham Collingridge 《Molecular neurobiology》2012,46(3):572-587
In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer??s disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of A??, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials. 相似文献
3.
《Journal of molecular biology》2023,435(12):167927
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD. 相似文献
4.
5.
Elisabet Cantó Esther Garcia Planella Carlos Zamora-Atenza Juan Camilo Nieto Jordi Gordillo Ma Angels Ortiz Isidoro Metón Elena Serrano Esteban Vegas Orlando García-Bosch Cándido Juárez Sílvia Vidal 《PloS one》2014,9(4)
The exact function of interleukin-19 (IL-19) on immune response is poorly understood. In mice, IL-19 up-regulates TNFα and IL-6 expression and its deficiency increases susceptibility to DSS-induced colitis. In humans, IL-19 favors a Th2 response and is elevated in several diseases. We here investigate the expression and effects of IL-19 on cells from active Crohn’s disease (CD) patient. Twenty-three active CD patients and 20 healthy controls (HC) were included. mRNA and protein IL-19 levels were analyzed in monocytes. IL-19 effects were determined in vitro on the T cell phenotype and in the production of cytokines by immune cells. We observed that unstimulated and TLR-activated monocytes expressed significantly lower IL-19 mRNA in active CD patients than in HC (logFC = −1.97 unstimulated; −1.88 with Pam3CSK4; and −1.91 with FSL-1; p<0.001). These results were confirmed at protein level. Exogenous IL-19 had an anti-inflammatory effect on HC but not on CD patients. IL-19 decreased TNFα production in PBMC (850.7±75.29 pg/ml vs 2626.0±350 pg/ml; p<0.01) and increased CTLA4 expression (22.04±1.55% vs 13.98±2.05%; p<0.05) and IL-4 production (32.5±8.9 pg/ml vs 13.5±2.9 pg/ml; p<0.05) in T cells from HC. IL-10 regulated IL-19 production in both active CD patients and HC. We observed that three of the miRNAs that can modulate IL-19 mRNA expression, were up-regulated in monocytes from active CD patients. These results suggested that IL-19 had an anti-inflammatory role in this study. Defects in IL-19 expression and the lack of response to this cytokine could contribute to inflammatory mechanisms in active CD patients. 相似文献
6.
Jung Hoon Lee Yanxialei Jiang Dong Hoon Han Seung Kyun Shin Won Hoon Choi Min Jae Lee 《Molecular neurobiology》2014,49(1):39-49
The significantly higher incidence of Alzheimer's disease (AD) in women than in men has been attributed to loss of estrogen and a variety of related mechanisms at the molecular, cellular, and hormonal levels, which subsequently elucidate neuroprotective roles of estrogen against AD-related pathology. Recent studies have proposed that beneficial effects of estrogen on AD are directly linked to its ability to reduce amyloid-β peptides and tau aggregates, two hallmark lesions of AD. Despite high expectations, large clinical trials with postmenopausal women indicated that the beneficial effects of estrogen therapies were insignificant and, in fact, elicited adverse effects. Here, we review the current status of AD prevention and treatment using estrogens focusing on recent understandings of their biochemical links to AD pathophysiology. This review also discusses development of selective ligands that specifically target either estrogen receptor α (ERα) or ERβ isoforms, which are potentially promising strategies for safe and efficient treatment of AD. 相似文献
7.
Maria Morello Véréna Landel Emmanuelle Lacassagne Kevin Baranger Cedric Annweiler François Féron Pascal Millet 《Molecular neurobiology》2018,55(8):6463-6479
The impairment of hippocampal neurogenesis at the early stages of Alzheimer’s disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in female AD-like mice reduced cognitive decline only when delivered during the symptomatic phase. With these data in hand, we wondered whether the consequences of vitamin D administration on hippocampal neurogenesis are stage-dependent. Male wild-type and transgenic AD-like mice (5XFAD model) were fed with a diet containing either no vitamin D (0VD) or a normal dose of vitamin D (NVD) or a high dose of vitamin D (HVD), from month 1 to month 6 (preventive arm) or from month 4 to month 9 (curative arm). Working memory was assessed using the Y-maze, while amyloid burden, astrocytosis, and neurogenesis were quantified using immunohistochemistry. In parallel, the effects of vitamin D on proliferation and differentiation were assayed on primary cultures of murine neural progenitor cells. Improved working memory and neurogenesis were observed when high vitamin D supplementation was administered during the early phases of the disease, while a normal dose of vitamin D increased neurogenesis during the late phases. Conversely, an early hypovitaminosis D increased the number of amyloid plaques in AD mice while a late hypovitaminosis D impaired neurogenesis in AD and WT mice. The observed in vivo vitamin D-associated increased neurogenesis was partially substantiated by an augmented in vitro proliferation but not an increased differentiation of neural progenitors into neurons. Finally, a sexual dimorphism was observed. Vitamin D supplementation improved the working memory of males and females, when delivered during the pre-symptomatic and symptomatic phases, respectively. Our study establishes that (i) neurogenesis is improved by vitamin D in a male mouse model of AD, in a time-dependent manner, and (ii) cognition is enhanced in a gender-associated way. Additional pre-clinical studies are required to further understand the gender- and time-specific mechanisms of action of vitamin D in AD. This may lead to an adaptation of vitamin D supplementation in relation to patient’s gender and age as well as to the stage of the disease. 相似文献
8.
C. Severi R. Sferra A. Scirocco A. Vetuschi N. Pallotta A. Pronio R. Caronna G. Di Rocco E. Gaudio E. Corazziari P. Onori 《European journal of histochemistry : EJH》2014,58(4)
Mesenchymal cells transdifferentiation and extracellular matrix deposition are involved in the fibrotic process of Crohn’s disease (CD). Mesenchymal smooth muscle cells (SMCs) de-differentiation, driven by Platelet-derived growth factor (PDGF) that counteracts Transforming growth factor (TGF-β) has been studied in vascular muscle. The role of SMCs in intestinal fibrogenesis is still not clearly elucidated. Aim of the study was to evaluate the possible myogenic contribution to CD fibrotic process through the comparative analysis of histological, morphometric and molecular alterations occurring in human smooth muscle. Full thickness specimens were obtained from CD (non-involved and stenotic tracts) and healthy (control) ileum. Tissues were processed for histological and immunohistochemical (IHC) analyses and SMCs were isolated from the muscularis propria for morphofunctional and molecular (qPCR) analyses. CD stenotic ileum showed a significant increased thickness of all layers compared to CD non-involved and control ileum. IHC revealed an overexpression of α-smooth muscle actin and collagens I-III throughout all intestinal layers only in stenotic tracts. The two growth factors, PDGF and TGF-β, showed a progressive increase in expression in the muscle layer from CD non-involved to stenotic tracts. Freshly isolated SMCs presented alterations in CD non-involved tracts that progressively increased in the stenotic tracts consisting in a statistical increase in mRNA encoding for PDGF-β and collagen III, paralleled to a decrease in TGF-β and Tribbles-like protein-3 mRNA, and altered morphofunctional parameters consisting in progressive decreases in cell length and contraction to acetylcholine. These findings indicate that intrinsic myogenic alterations occur in CD ileum, that they likely precede stricture formation, and might represent suitable new targets for anti-fibrotic interventions.Key words: Fibrosis, Crohn’s disease, ileal smooth muscle cells, stricture formation, PDGF, TGF-β 相似文献
9.
Agnes Simonyi Yan He Wenwen Sheng Albert Y. Sun W. Gibson Wood Gary A. Weisman Grace Y. Sun 《Molecular neurobiology》2010,41(2-3):73-86
Alzheimer’s disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Aβ) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Aβ. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Aβ in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A2 (PLA2) and secretory PLA2. In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Aβ NADPH oxidase and PLA2 can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease. 相似文献
10.
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by expended CAG repeats in the Huntingtin (Htt) gene. The resultant mutant Htt (mHtt) forms aggregates in neurons and causes neuronal dysfunctions. The major characteristic of HD is the selective loss of neurons in the striatum and cortex, which leads to movement disorders, dementia, and eventual death. Expression of mHtt was also found in non-neuronal cells in the brain, suggesting non-cell-autonomous neurotoxicity in HD. As was documented in many different neurodegenerative disorders, elevated inflammatory responses are also reported in HD. To date, effective treatments for this devastating disease remain to be developed. This review focuses on the importance of glial cells and inflammation in HD pathogenesis. Potential anti-inflammatory interventions for HD are also discussed. 相似文献
11.
Zhiyou Cai Nannuan Liu Chuanling Wang Biyong Qin Yingjun Zhou Ming Xiao Liying Chang Liang-Jun Yan Bin Zhao 《Cellular and molecular neurobiology》2016,36(4):483-495
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD. 相似文献
12.
Neurochemical Research - Alzheimer’s disease (AD) is associated with neural oxidative stress and inflammation, and it is assumed to affect more women than men with unknown mechanisms.... 相似文献
13.
14.
Introduction
In the light of evidence for the increased heat shock proteins (HSP) expression in neurodegenerative disorders, the presence of the adaptive humoral response of the immune system can be expected. The aim of the study was to check whether Parkinson’s disease (PD) has the ability to elicit immune response against small heat shock proteins.Methods
IgG and IgM autoantibodies against alpha B-crystallin were assessed in 26 PD patients 26 healthy subjects. For the assessment of anti-HSP IgG autoantibodies serum samples from 31 parkinsonian patients and 31 healthy control subjects were collected. Serum samples from PD patients and healthy control subjects were collected twice, at baseline and after mean of 13 months follow up.Results
Both IgM and IgG autoantibodies against alpha ß-crystallin in PD patients were significantly higher compared to healthy controls (p<0.05). We also found statistically significant increase in antibodies titers against alpha ß-crystallin over the time of 13 months, both for IgG (p = 0.021) and for IgM (p<0.0001). Additionally, PD patients presented higher levels of anti-HSP IgG autoantibodies than healthy controls (p = 0.02).Conclusions
Increase of IgG and IgM autoantibodies against alpha B-crystallin in PD patients over time may suggest their involvement in the disease pathogenesis and progression. Further studies are required to confirm the role of this antibody as a biomarker of the disease progression. 相似文献15.
Gabriel Westman David Berglund Johan Widén Martin Ingelsson Olle Korsgren Lars Lannfelt Dag Sehlin Anna-Karin Lidehall Britt-Marie Eriksson 《PloS one》2014,9(5)
Alzheimer’s disease (AD) has been associated with increased local inflammation in the affected brain regions, and in some studies also with elevated levels of proinflammatory cytokines in peripheral blood. Cytomegalovirus (CMV) is known to promote a more effector-oriented phenotype in the T-cell compartment, increasing with age. The aim of this study was to investigate the inflammatory response of peripheral blood mononuclear cells (PBMCs) from AD patients and non-demented (ND) controls. Using a multiplex Luminex xMAP assay targeting GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IP-10 and TNF-α, cytokine profiles from PBMCs were analysed after stimulation with anti-CD3/CD28 beads, CMV pp65 peptide mix or amyloid β (Aβ) protofibrils, respectively. CMV seropositive AD subjects presented with higher IFN-γ levels after anti-CD3/CD28 and CMV pp65 but not after Aβ stimulation, compared to CMV seropositive ND controls. When analysing IFN-γ response to anti-CD3/CD28 stimulation on a subgroup level, CMV seropositive AD subjects presented with higher levels compared to both CMV seronegative AD and CMV seropositive ND subjects. Taken together, our data from patients with clinically manifest AD suggest a possible role of CMV as an inflammatory promoter in AD immunology. Further studies of AD patients at earlier stages of disease, could provide better insight into the pathophysiology. 相似文献
16.
Recent developments suggest a causal link between inflammation and impaired bacterial clearance in Crohn’s disease (CD) due to alterations of intestinal macrophages. Studies suggest that excessive inflammation is the consequence of an underlying immunodeficiency rather than the primary cause of CD pathogenesis. We characterized phenotypic and functional features of peripheral blood monocytes of patients with quiescent CD (n = 18) and healthy controls (n = 19) by analyses of cell surface molecule expression, cell adherence, migration, chemotaxis, phagocytosis, oxidative burst, and cytokine expression and secretion with or without lipopolysaccharide (LPS) priming. Peripheral blood monocytes of patients with inactive CD showed normal expression of cell surface molecules (CD14, CD16, CD116), adherence to plastic surfaces, spontaneous migration, chemotaxis towards LTB4, phagocytosis of E. coli, and production of reactive oxygen species. Interestingly, peripheral blood monocytes of CD patients secreted higher levels of IL1β (p<.05). Upon LPS priming we found a decreased release of IL10 (p<.05) and higher levels of CCL2 (p<.001) and CCL5 (p<.05). The expression and release of TNFα, IFNγ, IL4, IL6, IL8, IL13, IL17, CXCL9, and CXCL10 were not altered compared to healthy controls. Based on our phenotypic and functional studies, peripheral blood monocytes from CD patients in clinical remission were not impaired compared to healthy controls. Our results highlight that defective innate immune mechanisms in CD seems to play a role in the (inflamed) intestinal mucosa rather than in peripheral blood. 相似文献
17.
18.
19.
20.
David H. Small 《Neurochemical research》2009,34(10):1824-1829
The accumulation of oligomeric species of β-amyloid protein in the brain is considered to be a key factor that causes Alzheimer’s disease (AD). However, despite many years of research, the mechanism of neurotoxicity in AD remains obscure. Recent evidence strongly supports the theory that Ca2+ dysregulation is involved in AD. Amyloid proteins have been found to induce Ca2+ influx into neurons, and studies on transgenic mice suggest that this Ca2+ influx may alter neuronal excitability. The identification of a risk factor gene for AD that may be involved in the regulation of Ca2+ homeostasis and recent findings which suggest that presenilins may be involved in the regulation of intracellular Ca2+ stores provide converging lines of evidence that support the idea that Ca2+ dysregulation is a key step in the pathogenesis of AD. Special issue article in Honor of Dr. Graham Johnston. 相似文献