首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A selection system based on the phosphomannose-isomerase gene (pmi) as a selectable marker and mannose as the selective agent was evaluated for the transformation of apple (Malus domestica Borkh.). Mannose is an unusable carbon source for many plant species. After uptake, mannose is phosphorylated by endogenous hexokinases to mannose-6-phosphate. The accumulation of mannose-6-phosphate leads to a block in glycolysis by inhibition of phosphoglucose-isomerase, resulting in severe growth inhibition. The phosphomannose-isomerase is encoded by the manA gene from Escherichia coli and catalyzes the conversion of mannose-6-phosphate to fructose-6-phosphate, an intermediate of glycolysis. Transformed cells expressing the manA gene can therefore utilize mannose as a carbon and survive on media containing mannose. The manA gene along with a β-glucuronidase (GUS) gene was transferred into apple cv. ‘Holsteiner Cox’ via Agrobacterium tumefaciens-mediated transformation. Leaf explants were selected on medium supplemented with different concentrations and combinations of mannose and sorbitol to establish an optimized mannose selection protocol. Transgenic lines were regenerated after an initial selection pressure of 1–2 g l−1 mannose in combination with 30 g l−1 sorbitol followed by a stepwise increase in the mannose concentration up to 10 g l−1 and simultaneous decrease in the sorbitol concentration. Integration of transgenes in the apple genome of selected plants was confirmed by PCR and southern blot analysis. GUS histochemical and chlorophenol red (CPR) assays confirmed activity of both transgenes in regenerated plants. The pmi/mannose selection system is shown to be highly efficient for producing transgenic apple plants without using antibiotics or herbicides.  相似文献   

2.
To establish a non-antibiotic selection system that utilizes the phosphomannose-isomerase (PMI) gene for Chinese cabbage transformation, we first determined the optimum mannose concentration for selecting transformed cells. Hypocotyl and cotyledon expiants that were grown on media containing more than 5 g L-1 mannose did not induce green calli but, rather became chlorotic and withered before dying. In contrast, media containing 20 g L-1 sucrose plus 5 g L-1 mannose proved suitable for selection. We then used this particular level of mannose to transform hypocotyl tissues. Within 6 weeks, shoots were regenerated from some of the calli; subsequently, these plants were transplanted to pots and grown in the greenhouse. A 514-bp PCR fragment was obtained from most transformants but not from the non-transformed plants. Southern blot analysis also revealed the expectedPMI gene in those PCR-confirmed transgenic plants. RT-PCR of total RNA was performed to confirmPMI expression. We have now demonstrated that this gene does not inhibit the growth of transgenic plants, and that this selection system can be applied to Chinese cabbage transformation.  相似文献   

3.
A dual-marker plasmid containing the selectable marker gene, manA, and the reporter gene, sgfp, was used to transform immature sorghum embryos by employing an Agrobacterium-mediated system. Both genes were under the control of the ubi1 promoter in a binary vector pPZP201. The Escherichia coli phosphomannose isomerase (PMI) gene, pmi, was used as the selectable marker gene and mannose was used as the selective agent. The sgfp gene encoding green fluorescence protein (GFP) was the reporter gene and served as a visual screening marker. A total of 167 transgenic plants were obtained from nine different embryogenic callus lines grown on a selection medium containing 1%-2% mannose. Embryoids and shoots regenerated via embryogenesis, that showed strong GFP fluorescence, were selected from two sorghum genotypes: C401, an inbred line, and Pioneer 8505, a commercial hybrid. The GFP accumulation in transgenic plants was observed with a dissecting stereomicroscope. The integration and expression of the manA gene was confirmed by Southern blot and Western blot analyses, and the feasibility of manA selection was demonstrated by the chlorophenol red (CPR) assay. Our results indicated that transgenes segregated in the Mendelian fashion in the T1 generation. The conversion of mannose to a metabolizable fructose carbon source is beneficial to plants. In addition, except in soybean and a few legumes, no endogenous PMI activity has been detected in plant species, indicating that PMI is useful in the transformation of sorghum. In addition, PMI has no sequence homology to known allergens. Optimization of this selection system for sorghum transformation provides an efficient way to produce transgenic plants without using antibiotic or herbicidal agents as selectable markers, and our results showed that the transformation efficiency reached 2.88% for Pioneer 8505 and 3.30% for C401, both values higher than in previously published reports.  相似文献   

4.
A positive selection system was developed forAgrobacterium-mediated transformation of rice that does not use toxic compounds such as antibiotics or herbicides. The selection system is based on theEscherichia coli phosphomannose isomerase (pmi) gene as a selectable marker and mannose as the selective agent. Only transgenic plants were able to metabolize mannose into a usable source of carbon, fructose. Selection was achieved using a combination of mannose and sucrose at 10 g/L and 5 g/L, respectively. Transgenic rice plants were produced efficiently injapanica rice variety Zhonghua 8, with transformation frequency of 16.5%, which was slightly lower than that achieved by hygromycin selection.  相似文献   

5.
根癌农杆菌介导的巨大口蘑遗传转化体系的构建   总被引:1,自引:0,他引:1  
查丽燕  宋舒晴  王越  文华枢  莫美华 《菌物学报》2020,39(10):1897-1904
以巨大口蘑菌丝为受体材料,利用含有双元质粒plasmid4的根癌农杆菌EHA105介导,首次成功建立了巨大口蘑的遗传转化体系。通过潮霉素抗性筛选、PCR鉴定和绿色荧光蛋白的检测,表明潮霉素抗性基因(Hyg)已经整合到巨大口蘑基因组中,增强型绿色荧光蛋白基因(eGFP)在巨大口蘑菌丝中获得表达,并能够稳定遗传。本研究建立了农杆菌介导的巨大口蘑遗传转化体系,为今后巨大口蘑的基因功能研究奠定了基础。  相似文献   

6.
Analysis of mannose selection used for transformation of sugar beet   总被引:39,自引:0,他引:39  
Various factors affecting mannose selection for the production of transgenic plants were studied using Agrobacterium tumefaciens-mediated transformation of sugar beet (Beta vulgaris L.) cotyledonary explants. The selection system is based on the Escherichia coli phosphomannose isomerase (PMI) gene as selectable gene and mannose as selective agent. Transformation frequencies were about 10-fold higher than for kanamycin selection but were only obtained at low selection pressures (1.0–1.5 g/l mannose) where 20–30% of the explants produced shoots. The non-transgenic shoots were eliminated during the selection procedure by a stepwise increase in the mannose concentration up to 10 g/l. Analysis of the transformed shoots showed that the PMI activity varied from 2.4 mU/mg to 350 mU/mg but the expression level was independent of the selection pressure. Complete resistance to mannose of transformed shoots was observed already at low PMI activities (7.5 mU/mg). Genomic DNA blot analysis confirmed the presence of the PMI gene in all transformants analysed. The possible mode of action of mannose selection compared to other selection methods is discussed.  相似文献   

7.
Lolium rigidum Gaud. is an annual grass grown for forage but also an economically damaging crop weed. A single genotype somatic embryogenic callus line, VLR1-60, was identified from a herbicide susceptible L. rigidum population, VLR1, and proved to be amenable to Agrobacterium tumefaciens-mediated transformation. Somatic embryogenic calli were continuously induced from the meristematic region of VLR1-60 plants multiplied in vitro and the basic tolerance level of VLR1-60 to hygromycin B was determined. A hygromycin phosphotransferase gene was used as a selectable marker for hygromycin B selection. Somatic embryogenic calli derived from in vitro grown vegetative tillers were co-cultivated with the A. tumefaciens strain EHA105 harbouring binary vector carrying reporter genes and selectable marker in the presence of acetosyringone for 3 days. Inoculated calli were recovered on callus proliferation medium containing Timentin? but lacking hygromycin and were then subcultured onto media with hygromycin concentrations increased progressively through time for selection of transformed plant cells. Putative transgenic plants were recovered and integration of transgenes was confirmed by Southern hybridization analysis and by detection of DsRed or GUS activity in transgenic plants. The frequency of plant transformation was 1.3 %. The ability to transform L. rigidum will provide opportunities for functional characterization of genes to improve forage quality and increase our understanding of the evolution of herbicide resistance and of the basic genetics underlying traits that make L. rigidum a damaging crop weed.  相似文献   

8.
The Agrobacterium-mediated transformation system was extended to a famous Javanica rice variety, Rojolele, that is cultivated in Indonesia now. Efficient callus induction from immature and mature seeds of Rojolele did not succeed by any previous method for any rice cultivar. In this study, the callus from mature seeds of Rojolele exhibited a compact and nodular appearance on C medium after the carbon source and medium pH was modified. Scutellum-derived calli from mature seeds were co-cultivated with Agrobacterium tumefaciens strains EHA101 or LBA4404 that carried plasmid pAFT14, which contained the genes for beta-glucuronidase (gus) and hygromycin resistance (hpt). Finally, the transformation efficiency of Rojolele variety using A. tumefaciens strain EHA101 (pAFT14) was improved to about 23%, similar to that of the Japonica rice variety Nipponbare. The seed fertility of transgenic Rojolele was more than 90%. The copy number of the transgene varied from one to three copies in the T(0) transgenic lines. Both the gus and the hpt genes were inherited and expressed in the progeny.  相似文献   

9.
Shoot organogenesis and plant regeneration were readily achieved from cotyledonary petioles and hypocotyls of Brassica carinata. These explants were used for Agrobacterium-mediated transformation. A construct containing the selectable marker genes, neomycin phosphotransferase II, phosphinothricin acetyl transferase and the reporter gene β-glucuronidase, under the control of a tandem 35S promoter, was used for transformation. Although transformation was achieved with both cotyledonary petioles and hypocotyls, cotyledonary petioles responded best, with 30–50% of the explants producing GUS-positive shoots after selection on 25 mg/l kanamycin. Direct selection on L-phosphinothricin also produced resistant shoots but at a lower frequency (1–2%). Received: 9 April 1997 / Revision received: 3 July 1997 / Accepted: 30 July 1997  相似文献   

10.
以刺芹侧耳菌丝球为受体,潮霉素(Hyg)为筛选标记,应用农杆菌介导法对刺芹侧耳菌丝进行了遗传转化研究。潮霉素敏感性测试结果表明,刺芹侧耳Hyg耐受浓度为50mg/L。农杆菌介导的刺芹侧耳菌丝最佳遗传转化体系为:菌液浓度OD600=0.6-0.7,侵染时间30-35min,共培养时间2d,侵染液和共培养培养基中乙酰丁香酮(AS)浓度为1mg/mL;经潮霉素抗性筛选、PCR鉴定和GUS活性的组织化学分析,表明外源基因GUS已转入到刺芹侧耳菌丝中,并获得表达。本实验成功地建立了稳定的农杆菌介导的刺芹侧耳遗传转化体系。  相似文献   

11.
Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray has been achieved. Regeneration-competent callus, obtained from bud explants of greenhouse-grown plants, was co-cultivated with Agrobacterium tumefaciens C58C1RifR(pMP90) harbouring a binary vector with the neomycin phosphotransferase II (nptII) and β-glucuronidase (uidA) marker genes. Transient expression of uidA was detected in five out of six genotypes tested. Transgenic callus lines of three genotypes were established on geneticin-containing medium. Plants were recovered from one line (genotype NI 576). This line had been transformed with a binary plasmid which, in addition to the marker genes, contained a genomic fragment encoding the Phaseolus vulgaris arcelin-5a protein. This seed storage protein presumably confers resistance to the insect Zabrotes subfasciatus, a major pest of P. vulgaris. Integration of foreign DNA was confirmed by molecular analysis. The introduced genes segregated as a single locus. Arcelin-5a was produced at high levels in seeds. The possibility of using P. acutifolius as a `bridging' species to introduce transgenes into the economically more important species P. vulgaris is discussed. Received: 20 July 1996 / Accepted: 23 August 1996  相似文献   

12.
Hu T  Metz S  Chay C  Zhou HP  Biest N  Chen G  Cheng M  Feng X  Radionenko M  Lu F  Fry J 《Plant cell reports》2003,21(10):1010-1019
An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.  相似文献   

13.
Transgenic torenia plants were obtained using the selectable marker gene phosphomannose isomerase (manA), which encodes the enzyme phosphomannose isomerase (PMI) to enable selection of transformed cells on media containing mannose. We found that shoot organogenesis in torenia leaf explants was effectively suppressed on medium supplemented with mannose, which indicated that torenia cells had little or no PMI activity and could not utilize mannose as a carbon source. Leaf pieces from in vitro-germinated plants were inoculated with Agrobacterium tumefaciens EHA105 containing the binary vector pKPJ with both hpt and ManA genes, and subsequently selected on shoot induction (SI) medium (half strength MS basal + 4.4 μM BA + 0.5 μM NAA) supplemented with 20 g l−1 mannose and 5 g l−1 sucrose as carbon sources. Transformed plants were confirmed by PCR and Southern blot. The transgene expression was evaluated using Northern blot and the chlorophenol red assay. The transformation efficiency ranged from 7% to 10%, which is 1–3% higher than that obtained by selection with hygromycin. This system provides an efficient manner for selecting transgenic flower plants without using antibiotics or herbicides.  相似文献   

14.
K Y Lee  P Lund  K Lowe    P Dunsmuir 《The Plant cell》1990,2(5):415-425
A single amino-acid change in the acetolactate synthase (ALS) protein of tobacco confers resistance to the herbicide chlorsulfuron. A deleted, nonfunctional fragment from the acetolactate synthase gene, carrying the mutant site specifying chlorsulfuron resistance plus a closely linked novel restriction site marker, was cloned into a binary vector. Tobacco protoplasts transformed with Agrobacterium tumefaciens carrying this vector yielded chlorsulfuron-resistant colonies. DNA gel blot analysis of DNA from these colonies suggested that in three transformants homologous recombination had occurred between the endogenous ALS gene and the deleted ALS gene present in the incoming T-DNA. Plants were regenerated from these chlorsulfuron-resistant colonies, and in two of the transformants, genetic analysis of their progeny showed that the novel gene segregated as a single Mendelian locus. Possible models for the generation of these recombinant plants are discussed.  相似文献   

15.
An efficient protocol for genetic transformation of somatic embryos of Quercus robur by selection in a temporary immersion system is reported. The transformation frequency was 5 times higher than achieved by conventional culture on semi-solid medium, ranging between 6 and 26 % for the four genotypes evaluated. Clumps of globular or torpedo somatic embryos were precultured for 7–10 days, inoculated with Agrobacterium tumefaciens strain EHA105:p35SGUSINT and cocultivated for 4 days before being cultured for 4 weeks on semi-solid selection medium supplemented with 25 mg L?1 kanamycin. Explants were transferred to RITA® bioreactors and subjected to a two-step selection protocol involving immersion in liquid medium supplemented with 25 mg L?1 kanamycin, for 18 weeks, and then with 75 mg L?1 kanamycin. Putatively transformed explants appeared after serial transfer to selection medium over 12–16 weeks. The presence of neomycin phosphotransferase II and β-glucuronidase genes in the plant genome was confirmed by histochemical and molecular analysis, and the copy number was determined by Southern blotting and real-time quantitative polymerase chain reaction. Transformed somatic embryos were germinated and transferred to soil for acclimatization, approximately 8 months after inoculation of the original tissue with bacteria. As the limiting factor for recovery of plants from oak embryogenic lines is the low embryo conversion rate, axillary shoot lines were established from transformed germinated embryos. Transformed embryos and shoots were cultured in medium with or without kanamycin and the responses to several morphogenetic processes (recovery after cryopreservation, germination, shoot proliferation, and rooting) were evaluated.  相似文献   

16.
《菌物学报》2017,(11):1514-1523
香菇Lentinula edodes是世界第二大食药用真菌,随着其全基因组测序的完成,功能基因组学研究也逐渐展开,建立稳定的香菇转化体系是目前的研究热点。本文将探索以农杆菌为介导的遗传转化体系在香菇中进行随机插入突变的转化效率以及稳定性。构建的质粒p YN6982以潮霉素抗性基因hyg作为筛选标记基因,以增强型荧光蛋白基因egfp作为报告基因,以农杆菌EHA105和LBA4404为介导,同时转化了孢子单核体、原生质体单核体和双核体菌株。结果表明采用小米粒培养基进行菌丝培养和转化,经潮霉素抗性筛选,以及5代传代后,对转化子中的hyg和egfp基因进行PCR扩增和测序,验证了转化子的遗传稳定性。经过荧光显微观察表明,EGFP在转化子中可稳定表达。本研究探索出一种采用小米粒培养基培养菌丝并进行转化的新方法,建立了稳定的农杆菌介导的香菇遗传转化体系,为进一步开展香菇的基因功能研究奠定了良好的基础。  相似文献   

17.
A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars.  相似文献   

18.
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.  相似文献   

19.
Summary The loxP-Cre site-specific recombination system of phage P1 was used to develop a novel strategy to construct cointegrate vectors for Agrobacterium-mediated plant transformation. A pTi disarmed helper plasmid (pAL1166) was constructed by replacing the oncogenic T-DNA by a loxP sequence and a spectinomycin resistance marker in the octopine-type pTiB6 plasmid. The cre gene was cloned into an unstable incP plasmid. A third plasmid, which did not replicate in Agrobacterium and contained another loxP sequence together with a kanamycin resistance marker, was used to test the system. Electroporation of this third plasmid into an Agrobacterium strain harbouring both pAL1166 and the Cre-encoding plasmid resulted in kanamycin-resistant cells containing a cointegrate between pAL1166 and the incoming plasmid. Cointegration occurred by Cre-mediated recombination at the loxP sites, and the cointegrate was stabilized in the Agrobacterium cells by the loss of the Cre-encoding plasmid shortly after the recombination event had taken place.  相似文献   

20.
Plant regeneration via somatic embryogenesis was achieved from leaf petioles of Pelargonium sp. `Frensham' cultured on Murashige and Skoog medium containing 15 μM N6-benzyladenine, and 5 μM α-naphthaleneacetic acid (NAA). More than 80% of these somatic embryos converted into plants when isolated and cultured on Murashige and Skoog medium supplemented with 15 μM NAA. Stable transgenic plants were obtained by co-cultivation of the petioles (prior to culture) with Agrobacterium tumefaciens strains LBA4404 (harbouring a binary vector pBI121 carrying the nptII and gus genes) and LBG66 (harbouring a binary plasmid pJQ418 carrying the gus/int:nptII fusion gene). Transformants were selected using kanamycin and transformation was verified by β-glucuronidase histochemical assay and polymerase chain reaction. Southern analysis further confirmed the integration of these genes into the genome of transgenic plants. We report here for the first time, an Agrobacterium-mediated model transformation system coupled with regeneration via somatic embryogenesis for production of transgenics in Pelargonium sp. Received: 20 September 1996 / Accepted: 13 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号