共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cancer stem cells (CSCs) possess capacity to both self-renew and generate all cells within a tumor, and are thought to drive tumor recurrence. Targeting the stem cell niche to eradicate CSCs represents an important area of therapeutic development. The complex nature of many interacting elements of the stem cell niche, including both intracellular signals and microenvironmental growth factors and cytokines, creates a challenge in choosing which elements to target, alone or in combination. Stochastic stimulation techniques allow for the careful study of complex systems in biology and medicine and are ideal for the investigation of strategies aimed at CSC eradication. We present a mathematical model of the breast cancer stem cell (BCSC) niche to predict population dynamics during carcinogenesis and in response to treatment. Using data from cell line and mouse xenograft experiments, we estimate rates of interconversion between mesenchymal and epithelial states in BCSCs and find that EMT/MET transitions occur frequently. We examine bulk tumor growth dynamics in response to alterations in the rate of symmetric self-renewal of BCSCs and find that small changes in BCSC behavior can give rise to the Gompertzian growth pattern observed in breast tumors. Finally, we examine stochastic reaction kinetic simulations in which elements of the breast cancer stem cell niche are inhibited individually and in combination. We find that slowing self-renewal and disrupting the positive feedback loop between IL-6, Stat3 activation, and NF-κB signaling by simultaneous inhibition of IL-6 and HER2 is the most effective combination to eliminate both mesenchymal and epithelial populations of BCSCs. Predictions from our model and simulations show excellent agreement with experimental data showing the efficacy of combined HER2 and Il-6 blockade in reducing BCSC populations. Our findings will be directly examined in a planned clinical trial of combined HER2 and IL-6 targeted therapy in HER2-positive breast cancer. 相似文献
3.
Hypoxia Promotes the Inflammatory Response and Stemness Features in Visceral Fat Stem Cells From Obese Subjects 下载免费PDF全文
Elisa Petrangeli Giuseppe Coroniti Anna T. Brini Laura de Girolamo Deborah Stanco Stefania Niada Gianfranco Silecchia Emanuela Morgante Carla Lubrano Matteo A. Russo Luisa Salvatori 《Journal of cellular physiology》2016,231(3):668-679
4.
Tissue hypoxia is a consequence of decreased oxygen levels in different inflammatory conditions, many associated with mast cell activation. However, the effect of hypoxia on mast cell functions is not well established. Here, we have investigated the effect of hypoxia per se on human mast cell survival, mediator secretion, and reactivity. Human cord blood derived mast cells were subjected to three different culturing conditions: culture and stimulation in normoxia (21% O2); culture and stimulation in hypoxia (1% O2); or 24 hour culture in hypoxia followed by stimulation in normoxia. Hypoxia, per se, did not induce mast cell degranulation, but we observed an increased secretion of IL-6, where autocrine produced IL-6 promoted mast cell survival. Hypoxia did not have any effect on A23187 induced degranulation or secretion of cytokines. In contrast, cytokine secretion after LPS or CD30 treatment was attenuated, but not inhibited, in hypoxia compared to normoxia. Our data suggests that mast cell survival, degranulation and cytokine release are sustained under hypoxia. This may be of importance for host defence where mast cells in a hypoxic tissue can react to intruders, but also in chronic inflammations where mast cell reactivity is not inhibited by the inflammatory associated hypoxia. 相似文献
5.
Maria Caruso Francesca Ferranti Katia Corano Scheri Gabriella Dobrowolny Fabio Ciccarone Paola Grammatico Angela Catizone Giulia Ricci 《PloS one》2015,10(4)
Testicular vasculogenesis is one of the key processes regulating male gonad morphogenesis. The knowledge of the molecular cues underlining this phenomenon is one of today’s most challenging issues and could represent a major contribution toward a better understanding of the onset of testicular morphogenetic disorders. R-spondin 1 has been clearly established as a candidate for mammalian ovary determination. Conversely, very little information is available on the expression and role of R-spondin 1 during testicular morphogenesis. This study aims to clarify the distribution pattern of R-spondin 1 and other partners of its machinery during the entire period of testicular morphogenesis and to indicate the role of this system in testicular development. Our whole mount immunofluorescence results clearly demonstrate that R-spondin 1 is always detectable in the testicular coelomic partition, where testicular vasculature is organized, while Dickkopf-1 is never detectable in this area. Moreover, organ culture experiments of embryonic male UGRs demonstrated that Dickkopf-1 acted as an inhibitor of testis vasculature formation. Consistent with this observation, real-time PCR analyses demonstrated that DKK1 is able to slightly but significantly decrease the expression level of the endothelial marker Pecam1. The latter experiments allowed us to observe that DKK1 administration also perturbs the expression level of the Pdgf-b chain, which is consistent with some authors’ observations relating this factor with prenatal testicular patterning and angiogenesis. Interestingly, the DKK1 induced inhibition of testicular angiogenesis was rescued by the co-administration of R-spondin 1. In addition, R-spondin 1 alone was sufficient to enhance, in culture, testicular angiogenesis. 相似文献
6.
7.
《Cell cycle (Georgetown, Tex.)》2013,12(4):412-413
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Paradoxically, however, some cancers seem to contain stem-like cells (cancer stem cells). To help resolve this paradox, we investigated whether established malignant cell lines, which have been maintained over years in culture, contain a subpopulation of stem cells. We have shown that four cancer cell lines contain a small side population (SP), which, in many normal tissues, is enriched for stem cells of the tissue. We have also shown that SP cells in C6 glioma cell line, but not non-SP cells, can generate both SP and non-SP cells in culture and are largely responsible for the in vivo malignancy of this cell line. We propose that many cancer cell lines contain a minor subpopulation of stem cells that is enriched in a SP, can be maintained indefinitely in culture, and is crucial for their malignancy. 相似文献
8.
9.
10.
Lei Gao Dantong Li Ke Ma Wenjuan Zhang Tao Xu Cong Fu Changbin Jing Xiaoe Jia Shuang Wu Xin Sun Mei Dong Min Deng Yi Chen Wenge Zhu Jinrong Peng Fengyi Wan Yi Zhou Leonard I. Zon Weijun Pan 《PLoS genetics》2015,11(7)
In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. 相似文献
11.
12.
Jianwei Wang Qian SunYohei Morita Hong JiangAlexander Groß André LechelKai Hildner Luis Miguel GuachallaAnne Gompf Daniel HartmannAxel Schambach Torsten WüstefeldDaniel Dauch Hubert SchrezenmeierWolf-Karsten Hofmann Hiromitsu NakauchiZhenyu Ju Hans A. KestlerLars Zender K. Lenhard Rudolph 《Cell》2014
13.
Xiaowu Sheng Michael Reppel Filomain Nguemo Farooq Ibrahem Mohammad Alexey Kuzmenkin Jürgen Hescheler Kurt Pfannkuche 《PloS one》2012,7(9)
Stem cell derived cardiomyocytes generated either from human embryonic stem cells (hESC-CMs) or human induced pluripotent stem cells (hiPSC-CMs) hold great promise for the investigation of early developmental processes in human cardiomyogenesis and future cell replacement strategies. We have analyzed electrophysiological properties of hESC-CMs (HES2) and hiPSC-CMs, derived from reprogrammed adult foreskin fibroblasts that have previously been found to be highly similar in terms of gene expression. In contrast to the similarity found in the expression profile we found substantial differences in action potentials (APs) and sodium currents at late stage (day 60) of in vitro differentiation with higher sodium currents in hiPSC-CMs. Sensitivity to lidocain was considerably reduced in hESC-CMs as compared to hiPSC-CMs, and the effect could not be explained by differences in beating frequency. In contrast, sensitivity to tetrodotoxin (TTX) was higher in hESC-CMs suggesting different contributions of TTX-sensitive and TTX-resistant sodium channels to AP generation. These data point to physiological differences that are not necessarily detected by genomics. We conclude that novel pharmacological screening-assays using hiPSC-CMs need to be applied with some caution. 相似文献
14.
15.
Shasha Su Feng Hong Yanling Liang Jieqiong Zhou Yan Liang Kequan Chen Xinying Wang Zhongqiu Wang Zhiqing Wang Cassie Chang Weihua Han Wei Gong Haitao Qin Bo Jiang Huabao Xiong Liang Peng 《PloS one》2015,10(11)
Objective
Leucine-rich-repeat-containing G-protein-coupled receptor 5 (lgr5) is a candidate marker for colorectal cancer stem cells (CSC). In the current study, we investigated the methylation status within thelgr5 promoter and evaluated its relationship with CSC differentiation, prognosis for colorectal cancer, and its clinicopathological features.Methods
The methylation status within Lgr5 promoter was detected with a methylation-specific PCR in six colorectal cancer cell lines as well as 169 primary colorectal tumor tissues. Differentiation of CSC was examined with immunofluorescence and immunocytochemistry. Down-regulation of lgr5 was achieved with gene-specific siRNA. The associations between lgr5 methylation and the clinicopathological features as well as survival of patients were analyzed with statistical methods.Results
The lgr5 promoter was methylated to different degrees for the six colorectal cell lines examined, with complete methylation observed in HCT116 cells in which the lgr5 expression was partially recovered following DAC treatment. The stem-cell sphere formation from HCT116 cells was accompanied by increasing methylation within the lgr5 promoter and decreasing expression of lgr5. Knocking down lgr5 by siRNA also led to stem-cell spheres formation. Among primary colorectal tumors, 40% (67/169) were positive for lgr5 methylation, while none of the normal colon tissues were positive for lgr5 methylation. Furthermore, lgr5 methylation significantly associated with higher tumor grade, and negative distant metastasis (p < 0.05), as well as better prognosis (p = 0.001) in patients with colorectal cancer.Conclusions
Our data suggests that lgr5 methylation, through the regulation of lgr5 expression and colorectal CSC differentiation, may constitute a novel prognostic marker for colorectal cancer patients. 相似文献16.
Nobu Oshima Yasuhiro Yamada Satoshi Nagayama Kenji Kawada Suguru Hasegawa Hiroshi Okabe Yoshiharu Sakai Takashi Aoi 《PloS one》2014,9(7)
Cancer stem cells (CSCs) are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4) into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs). Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs. 相似文献
17.
Ping Wang Quanli Gao Zhenhe Suo Else Munthe Steinar Solberg Liwei Ma Mengyu Wang Nomdo Anton Christiaan Westerdaal Gunnar Kvalheim Gustav Gaudernack 《PloS one》2013,8(3)
Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. 相似文献
18.
人肿瘤干细胞(human cancer stem cells,CSCs)分离后异种移植至模型内的成瘤特性,为研究肿瘤病因学和制订抗癌策略提供了新的手段和方法。但是,目前人肿瘤干细胞的鉴别离不开移植至异种免疫缺陷鼠内建立肿瘤干细胞的动物模型。本文主要从CSCs的概念、CSCs与肿瘤的关系、CSCs异种移植模型研究进展、模型建立的影响因素、模型建立存在的问题等进行简要综述,为异种移植模型的建立提供参考。 相似文献
19.
Swetlana Sirko Gwendolyn Behrendt Pia Annette Johansson Pratibha Tripathi Marcos Romualdo Costa Sarah Bek Christophe Heinrich Steffen Tiedt Dilek Colak Martin Dichgans Isabel Rebekka Fischer Nikolaus Plesnila Matthias Staufenbiel Christian Haass Marina Snapyan Armen Saghatelyan Li-Huei Tsai André Fischer Magdalena Götz 《Cell Stem Cell》2013,12(4):426-439
Highlights? Stab wound injury and MCAo elicit a profound stem cell response ? Noninvasive brain injury fails to elicit a stem cell response ? SHH is upregulated and required in lesion conditions with a stem cell response ? SHH transducer deletion in astrocytes reduces their proliferative response to injury 相似文献
20.
Swetlana Sirko Gwendolyn Behrendt Pia Annette Johansson Pratibha Tripathi Marcos Romualdo Costa Sarah Bek Christophe Heinrich Steffen Tiedt Dilek Colak Martin Dichgans Isabel Rebekka Fischer Nikolaus Plesnila Matthias Staufenbiel Christian Haass Marina Snapyan Armen Saghatelyan Li-Huei Tsai André Fischer Magdalena Götz 《Cell Stem Cell》2013,12(5):629