首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of antithrombin (AT) by heparin facilitates the exosite-dependent interaction of the serpin with factors IXa (FIXa) and Xa (FXa), thereby improving the rate of reactions by 300- to 500-fold. Relative to FXa, AT inhibits FIXa with ∼40-fold slower rate constant. Structural data suggest that differences in the residues of the 39-loop (residues 31–41) may partly be responsible for the differential reactivity of the two proteases with AT. This loop is highly acidic in FXa, containing three Glu residues at positions 36, 37, and 39. By contrast, the loop is shorter by one residue in FIXa (residue 37 is missing), and it contains a Lys and an Asp at positions 36 and 39, respectively. To determine whether differences in the residues of this loop contribute to the slower reactivity of FIXa with AT, we prepared an FIXa/FXa chimera in which the 39-loop of the protease was replaced with the corresponding loop of FXa. The chimeric mutant cleaved a FIXa-specific chromogenic substrate with normal catalytic efficiency, however, the mutant exhibited ∼5-fold enhanced reactivity with AT specifically in the absence of the cofactor, heparin. Further studies revealed that the FIXa mutant activates factor X with ∼4-fold decreased kcat and ∼2-fold decreased Km, although the mutant interacted normally with factor VIIIa. Based on these results we conclude that residues of the 39-loop regulate the cofactor-independent interaction of FIXa with its physiological inhibitor AT and substrate factor X.  相似文献   

2.
Heparin allosterically activates antithrombin as an inhibitor of factors Xa and IXa by enhancing the initial Michaelis complex interaction of inhibitor with protease through exosites. Here, we investigate the mechanism of this enhancement by analyzing the effects of alanine mutations of six putative antithrombin exosite residues and three complementary protease exosite residues on antithrombin reactivity with these proteases in unactivated and heparin-activated states. Mutations of antithrombin Tyr253 and His319 exosite residues produced massive 10–200-fold losses in reactivity with factors Xa and IXa in both unactivated and heparin-activated states, indicating that these residues made critical attractive interactions with protease independent of heparin activation. By contrast, mutations of Asn233, Arg235, Glu237, and Glu255 exosite residues showed that these residues made both repulsive and attractive interactions with protease that depended on the activation state and whether the critical Tyr253/His319 residues were mutated. Mutation of factor Xa Arg143, Lys148, and Arg150 residues that interact with the exosite in the x-ray structure of the Michaelis complex confirmed the importance of all residues for heparin-activated antithrombin reactivity and Arg150 for native serpin reactivity. These results demonstrate that the exosite is a key determinant of antithrombin reactivity with factors Xa and IXa in the native as well as the heparin-activated state and support a new model of allosteric activation we recently proposed in which a balance between attractive and repulsive exosite interactions in the native state is shifted to favor the attractive interactions in the activated state through core conformational changes induced by heparin binding.  相似文献   

3.
The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn2+ in this interaction because Zn2+ is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn2+ promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn2+-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn2+-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn2+ is present. These results reveal the mechanism by which Zn2+ augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.  相似文献   

4.
Factor VIII (FVIII) consists of a heavy chain (A1(a1)A2(a2)B domains) and light chain ((a3)A3C1C2 domains). To gain insights into a role of the FVIII C domains, we eliminated the C1 domain by replacing it with the homologous C2 domain. FVIII stability of the mutant (FVIIIC2C2) as measured by thermal decay at 55 °C of FVIII activity was markedly reduced (∼11-fold), whereas the decay rate of FVIIIa due to A2 subunit dissociation was similar to WT FVIIIa. The binding affinity of FVIIIC2C2 for phospholipid membranes as measured by fluorescence resonance energy transfer was modestly lower (∼2.8-fold) than that for WT FVIII. Among several anti-FVIII antibodies tested (anti-C1 (GMA8011), anti-C2 (ESH4 and ESH8), and anti-A3 (2D2) antibody), only ESH4 inhibited membrane binding of both WT FVIII and FVIIIC2C2. FVIIIa cofactor activity measured in the presence of each of the above antibodies was examined by FXa generation assays. The activity of WT FVIIIa was inhibited by both GMA8011 and ESH4, whereas the activity of FVIIIC2C2 was inhibited by both the anti-C2 antibodies, ESH4 and ESH8. Interestingly, factor IXa (FIXa) binding affinity for WT FVIIIa was significantly reduced in the presence of GMA8011 (∼10-fold), whereas the anti-C2 antibodies reduced FIXa binding affinity of FVIIIC2C2 variant (∼4-fold). Together, the reduced stability plus impaired FIXa interaction of FVIIIC2C2 suggest that the C1 domain resides in close proximity to FIXa in the FXase complex and contributes a critical role to FVIII structure and function.  相似文献   

5.
The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction ∼2000-fold in the presence of phospholipid and Ca2+. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZΔGD) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing ∼5–10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only ∼2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional ∼1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.  相似文献   

6.
Abstract

The activity of antithrombin (AT), a serpin protease inhibitor, is enhanced by heparin and heparin analogs against its target proteases, mainly thrombin, factors Xa and IXa. Considerable amount of information is available on the multistep mechanism of the heparin pentasaccharide binding and conformational activation. However, much of the details were inferred from ‘static’ structures obtained by X-ray diffraction. Moreover, limited information is available for the early steps of binding mechanism other than kinetic studies with various ligands. To gain insights into these processes, we performed enhanced sampling molecular dynamics (MD) simulations using the Gaussian Accelerated Molecular Dynamics (GAMD) method, applied previously in drug binding studies. We were able to observe the binding of the pentasaccharide idraparinux to a ‘non-activated’ AT conformation in two separate trajectories with low root mean square deviation (RMSD) values compared to X-ray structures of the bound state. These trajectories along with further simulations of the AT-pentasaccharide complex provided insights into the mechanisms of multiple conformational transitions, including the expulsion of the hinge region, the extension of helix D and the conformational behavior of the reactive center loop (RCL). We could also confirm the high stability of helix P in non-activated AT conformations, such states might play an important role in heparin binding. ‘Generalized correlation’ matrices revealed possible paths of allosteric signal propagation to the binding sites for the target proteases, factors Xa and IXa. Enhanced MD simulations of ligand binding to AT may assist the design of new anticoagulant drugs.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Antithrombin (AT) inhibits most of the serine proteases generated in the blood coagulation cascade, but its principal targets are factors IXa, Xa, and thrombin. Heparin binding to AT, via a specific pentasaccharide sequence, alters the conformation of AT in a way that promotes efficient inhibition of factors IXa and Xa, but not of thrombin. The conformational change most likely to be relevant to protease recognition is the expulsion of the N-terminal portion of the reactive center loop (hinge region) from the main beta-sheet A. Here we investigate the hypothesis that the exosites on the surface of AT are accessible for interaction with a protease only when the hinge region is fully extended, as seen in the related Michaelis complex between heparin cofactor II and thrombin. We engineered a disulfide bond between residues 222 on strand 3A and 381 in the reactive center loop to prevent the extension of the hinge region upon pentasaccharide binding. The disulfide bond did not significantly alter the ability of the variant to bind to heparin or to inhibit thrombin. Although the basal rate of factor Xa inhibition was not affected, that of factor IXa inhibition was reduced to the limit of detection. In addition, the disulfide bond completely abrogated the pentasaccharide accelerated inhibition of factors Xa and IXa. We conclude that AT hinge region extension is the activating conformational change for inhibition of factors IXa and Xa, and propose models for the progressive and activated AT Michaelis complexes with thrombin, factor Xa, and factor IXa.  相似文献   

8.
We have previously shown that exosites in antithrombin outside the P6-P3' reactive loop region become available upon heparin activation to promote rapid inhibition of the target proteases, factor Xa and factor IXa. To identify these exosites, we prepared six antithrombin-alpha 1-proteinase inhibitor chimeras in which antithrombin residues 224-286 and 310-322 that circumscribe a region surrounding the reactive loop on the inhibitor surface were replaced in 10-16-residue segments with the homologous segments of alpha1-proteinase inhibitor. All chimeras bound heparin with a high affinity similar to wild-type, underwent heparin-induced fluorescence changes indicative of normal conformational activation, and were able to form SDS-stable complexes with thrombin, factor Xa, and factor IXa and inhibit these proteases with stoichiometries minimally altered from those of wild-type antithrombin. With only one exception, conformational activation of the chimeras with a heparin pentasaccharide resulted in normal approximately 100-300-fold enhancements in reactivity with factor Xa and factor IXa. The exception was the chimera in which residues 246-258 were replaced, corresponding to strand 3 of beta-sheet C, which showed little or no enhancement of its reactivity with these proteases following pentasaccharide activation. By contrast, all chimeras including the strand 3C chimera showed essentially wild-type reactivities with thrombin after pentasaccharide activation as well as normal full-length heparin enhancements in reactivity with all proteases due to heparin bridging. These findings suggest that antithrombin exosites responsible for enhancing the rates of factor Xa and factor IXa inhibition in the conformationally activated inhibitor lie in strand 3 of beta-sheet C of the serpin.  相似文献   

9.
Because of the homology between factor IXa and factor Xa (f.IXa and f.Xa, respectively), and the critical upstream position of f.IXa in the coagulation cascade, the contribution of the heparin-derived pentasaccharide to antithrombin-mediated inhibition of f.IXa was investigated. Pentasaccharide promotes inhibition of both f.IXa and f.Xa generated in recalcified plasma. This result demonstrates that antithrombin is the predominant inhibitor of f.IXa in plasma, and that the activity of antithrombin is promoted by pentasaccharide. Kinetic experiments reveal that pentasaccharide increases the rates of antithrombin-mediated inhibition of both f.IXa and f.Xa by 2 orders of magnitude. These findings indicate that pentasaccharide-induced conformational changes in antithrombin enhance its capacity to inhibit both f.IXa and f.Xa. In the presence of Ca2+, full-length heparin produces an additional approximately 10-fold increase in the rates of inhibition of both enzymes, consistent with a template role of heparin. Heparin binding to f.Xa was previously shown to be promoted in the presence of Ca2+. Binding studies with f.IXa reveal a 10-fold higher affinity for heparin in the presence of Ca2+ compared with its absence. Thus, Ca2+ promotes heparin-catalyzed inhibition of f.IXa and f.Xa by antithrombin by augmenting the template mechanism. These results indicate that heparin-mediated catalysis of f.IXa inhibition by antithrombin reflects both pentasaccharide-induced conformational changes and heparin-mediated bridging of antithrombin to f.IXa. Furthermore, our data suggest that the efficacy of pentasaccharide for prevention and treatment of thrombotic disorders may reflect its action at two sites in the coagulation system.  相似文献   

10.
The factor VIII (FVIII) crystal structure suggests a possible bonding interaction of His281 (A1 domain) with Ser524 (A2 domain), although the resolution of the structure (∼4 Å) does not firmly establish this bonding. To establish that side chains of these residues participate in an interdomain bond, we prepared and examined the functional properties of a residue swap variant (H281S/S524H) where His281 and Ser524 residues were exchanged with one another and a disulfide-bridged variant (H281C/S524C) where the two residues were replaced with Cys. The latter variant showed efficient disulfide bonding of the A1 and A2 domains. The swap variant showed WT-like FVIII and FVIIIa stability, which were markedly reduced for H281A and S524A variants in an earlier study. The disulfide-bridged variant showed ∼20% increased FVIII stability, and FVIIIa did not decay during the time course measured. This variant also yielded 35% increased thrombin peak values compared with WT in a plasma-based thrombin generation assay. Binding analyses of H281S-A1/A3C1C2 dimer with S524H-A2 subunit yielded a near WT-like affinity value, whereas combining the variant dimer or A2 subunit with the WT complement yielded ∼5- and ∼10-fold reductions, respectively, in affinity. Other functional properties including thrombin generation potential, FIXa binding affinity, Km for FX of FXase complexes, thrombin activation efficiency, and down-regulation by activated protein C showed similar results for the two variants compared with WT FVIII. These results indicate that the side chains of His281 and Ser524 are in close proximity and contribute to a bonding interaction in FVIII that is retained in FVIIIa.  相似文献   

11.
The synthetic antithrombin-binding heparin pentasaccharide and a full-length heparin of approximately 26 saccharides containing this specific sequence have been compared with respect to their interactions with antithrombin and their ability to promote inhibition and substrate reactions of antithrombin with thrombin and factor Xa. The aim of these studies was to elucidate the pentasaccharide contribution to heparin's accelerating effect on antithrombin-proteinase reactions. Pentasaccharide and full-length heparins bound antithrombin with comparable high affinities (KD values of 36 +/- 11 and 10 +/- 3 nM, respectively, at I 0.15) and induced highly similar protein fluorescence, ultraviolet and circular dichroism changes in the inhibitor. Stopped-flow fluorescence kinetic studies of the heparin binding interactions at I 0.15 were consistent with a two-step binding process for both heparins, involving an initial weak encounter complex interaction formed with similar affinities (KD 20-30 microM), followed by an inhibitor conformational change with indistinguishable forward rate constants of 520-700 s-1 but dissimilar reverse rate constants of approximately 1 s-1 for the pentasaccharide and approximately 0.2 s-1 for the full-length heparin. Second order rate constants for antithrombin reactions with thrombin and factor Xa were maximally enhanced by the pentasaccharide only 1.7-fold for thrombin, but a substantial 270-fold for factor Xa, in an ionic strength-independent manner at saturating oligosaccharide. In contrast, the full-length heparin produced large ionic strength-dependent enhancements in second order rate constants for both antithrombin reactions of 4,300-fold for thrombin and 580-fold for factor Xa at I 0.15. These enhancements were resolvable into a nonionic component ascribable to the pentasaccharide and an ionic component responsible for the additional rate increase of the larger heparin. Stoichiometric titrations of thrombin and factor Xa inactivation by antithrombin, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of these reactions, indicated that pentasaccharide and full-length heparins similarly promoted the formation of proteolytically modified inhibitor during the inactivation of factor Xa by antithrombin, whereas only the full-length heparin was effective in promoting this substrate reaction of antithrombin during the reaction with thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The binding of low molecular weight heparin to hemostatic enzymes   总被引:8,自引:0,他引:8  
A low molecular weight preparation of porcine heparin (specific anticoagulation activity = 125 units/mg) was fractionated to obtain a mucopolysaccharide product of 6500 daltons (specific anticoagulant activity = 373 units/mg) that is homogeneous with respect to its interaction with antithrombin. This material was treated with fluorescamine in order to introduce a fluorescent tag into the mucopolysaccharide. Initially, we showed that the fluorescamine-heparin conjugate and the unlabeled mucopolysaccharide interacted with antithrombin in a virtually identical fashion. Subsequently, we demonstrated that labeled heparin could be utilized in conjunction with fluorescence polarization spectroscopy to monitor the binding of mucopolysaccharide to thrombin, factor IXa, factor Xa, and plasmin. The interaction of this complex carbohydrate with thrombin exhibited a stoichiometry of 2:1 with KH1T DISS = KH2T DISS = 8 x 10(-7) M. The formation of mucopolysaccharide . factor IXa complex is characterized by a stoichiometry of 1:1 with KHIXa DISS = 2.58 x 10(-7) M. The binding of heparin to factor Xa or plasmin occurred with low avidity. Therefore, the stoichiometries of these processes could not be established. However, our experimental data were compatible with a single-site binding residue with KHXa DISS = 8.73 x 10(-6) M and KHPL DISS = approximately 1 x 10(-4) M, respectively.  相似文献   

13.
We investigate the hypothesis that heparin activates antithrombin (AT) by relieving electrostatic strain within helix D. Mutation of residues K125 and R129 to either Ala or Glu abrogated heparin binding, but did not activate AT towards inhibition of factors IXa or Xa. However, substitution of residues C-terminal to helix D (R132 and K133) to Ala had minimal effect on heparin affinity but resulted in appreciable activation. We conclude that charge neutralization or reversal in the heparin binding site does not drive the activating conformational change of AT, and that the role of helix D elongation is to stabilize the activated state.  相似文献   

14.
Arocas V  Turk B  Bock SC  Olson ST  Björk I 《Biochemistry》2000,39(29):8512-8518
The interaction of a well-defined pentasaccharide sequence of heparin with a specific binding site on antithrombin activates the inhibitor through a conformational change. This change increases the rate of antithrombin inhibition of factor Xa, whereas acceleration of thrombin inhibition requires binding of both inhibitor and proteinase to the same heparin chain. An extended heparin binding site of antithrombin outside the specific pentasaccharide site has been proposed to account for the higher affinity of the inhibitor for full-length heparin chains by interacting with saccharides adjacent to the pentasaccharide sequence. To resolve conflicting evidence regarding the roles of Lys136 and Lys139 in this extended site, we have mutated the two residues to Ala or Gln. Mutation of Lys136 decreased the antithrombin affinity for full-length heparin by at least 5-fold but minimally altered the affinity for the pentasaccharide. As a result, the full-length heparin and pentasaccharide affinities were comparable. The reduced affinity for full-length heparin was associated with the loss of one ionic interaction and was caused by both a lower overall association rate constant and a higher overall dissociation rate constant. In contrast, mutation of Lys139 affected neither full-length heparin nor pentasaccharide affinity. The rate constants for inhibition of thrombin and factor Xa by the complexes between antithrombin and full-length heparin or pentasaccharide were unaffected by both mutations, indicating that neither Lys136 nor Lys139 is involved in heparin activation of the inhibitor. Together, these results show that Lys136 forms part of the extended heparin binding site of antithrombin that participates in the binding of full-length heparin chains, whereas Lys139 is located outside this site.  相似文献   

15.
Factor (F) VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains). The activated form of FVIII, FVIIIa, functions as a cofactor for FIXa in catalyzing the membrane-dependent activation of FX. Whereas the FVIII C2 domain is believed to anchor FVIIIa to the phospholipid surface, recent x-ray crystal structures of FVIII suggest that the C1 domain may also contribute to this function. We constructed a FVIII variant lacking the C2 domain (designated ΔC2) to characterize the contributions of the C1 domain to function. Binding affinity of the ΔC2 variant to phospholipid vesicles as measured by energy transfer was reduced ∼14-fold. However, the activity of ΔC2 as measured by FXa generation and one-stage clotting assays retained 76 and 36%, respectively, of the WT FVIII value. Modest reductions (∼4-fold) were observed in the functional affinity of ΔC2 FVIII for FIXa and rates of thrombin activation. On the other hand, deletion of C2 resulted in significant reductions in FVIIIa stability (∼3.6-fold). Thrombin generation assays showed peak thrombin and endogenous thrombin potential were reduced as much as ∼60-fold. These effects likely result from a combination of the intermolecular functional defects plus reduced protein stability. Together, these results indicate that FVIII domains other than C2, likely C1, make significant contributions to membrane-binding and membrane-dependent function.  相似文献   

16.
The anticoagulant serpin, protein Z-dependent protease inhibitor (ZPI), circulates in blood as a tight complex with its cofactor, protein Z (PZ), enabling it to function as a rapid inhibitor of membrane-associated factor Xa. Here, we show that N,N′-dimethyl-N-(acetyl)-N′-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled K239C ZPI is a sensitive, moderately perturbing reporter of the ZPI-PZ interaction and utilize the labeled ZPI to characterize in-depth the thermodynamics and kinetics of wild-type and variant ZPI-PZ interactions. NBD-labeled K239C ZPI bound PZ with ∼3 nm KD and ∼400% fluorescence enhancement at physiologic pH and ionic strength. The NBD-ZPI-PZ interaction was markedly sensitive to ionic strength and pH but minimally affected by temperature, consistent with the importance of charged interactions. NBD-ZPI-PZ affinity was reduced ∼5-fold by physiologic calcium levels to resemble NBD-ZPI affinity for γ-carboxyglutamic acid/EGF1-domainless PZ. Competitive binding studies with ZPI variants revealed that in addition to previously identified Asp-293 and Tyr-240 hot spot residues, Met-71, Asp-74, and Asp-238 made significant contributions to PZ binding, whereas Lys-239 antagonized binding. Rapid kinetic studies indicated a multistep binding mechanism with diffusion-limited association and slow complex dissociation. ZPI complexation with factor Xa or cleavage decreased ZPI-PZ affinity 2–7-fold by increasing the rate of PZ dissociation. A catalytic role for PZ was supported by the correlation between a decreased rate of PZ dissociation from the K239A ZPI-PZ complex and an impaired ability of PZ to catalyze the K239A ZPI-factor Xa reaction. Together, these results reveal the energetic basis of the ZPI-PZ interaction and suggest an important role for ZPI Lys-239 in PZ catalytic action.  相似文献   

17.
F Lian  L He  N S Colwell  P Lollar  D M Tollefsen 《Biochemistry》2001,40(29):8508-8513
A monoclonal IgG isolated from a patient with multiple myeloma has been shown to bind to exosite II of thrombin, prolong both the thrombin time and the activated partial thromboplastin time (aPTT) when added to normal plasma, and alter the kinetics of hydrolysis of synthetic peptide substrates. Although the IgG does not affect cleavage of fibrinogen by thrombin, it increases the rate of inhibition of thrombin by purified antithrombin approximately 3-fold. Experiments with plasma immunodepleted of antithrombin or heparin cofactor II confirm that prolongation of the thrombin time requires antithrombin. By contrast, prolongation of the aPTT requires neither antithrombin nor heparin cofactor II. The IgG delays clotting of plasma initiated by purified factor IXa but has much less of an effect on clotting initiated by factor Xa. In a purified system, the IgG decreases the rate of activation of factor VIII by thrombin. These studies indicate that binding of a monoclonal IgG to exosite II prolongs the thrombin time indirectly by accelerating the thrombin-antithrombin reaction and may prolong the aPTT by interfering with activation of factor VIII, thereby diminishing the catalytic activity of the factor IXa/VIIIa complex.  相似文献   

18.
We previously showed that conformational activation of the anticoagulant serpin, antithrombin, by heparin generates new exosites in strand 3 of beta-sheet C, which promote the reaction of the inhibitor with the target proteases, factor Xa and factor IXa. To determine which residues comprise the exosites, we mutated strand 3C residues that are conserved in all vertebrate antithrombins. Combined mutations of the three conserved surface-accessible residues, Tyr253,Glu255, and Lys257, or of just Tyr253 and Glu255, but not any of these residues alone, was sufficient to reproduce the exosite defects of a strand 3C antithrombin-alpha1-proteinase inhibitor chimera in reactions of the heparin-activated variants with both factor Xa and factor IXa. Importantly, the exosite-defective antithrombins bound heparin with nearly wild-type affinities, and the heparin-activated mutants showed near normal reactivities with thrombin, a protease that does not utilize the exosite. Mutation of the conserved but partially buried strand 3C residue, Gln254, the reactive loop P6' residue, Arg399, which interacts with Glu255, or a residue proposed to constitute the exosite from modeling studies, Glu237, all produced minimal effects on antithrombin reactivity with thrombin, factor Xa, and factor IXa in the absence or presence of heparin. Together, these results indicate that Tyr253 and Glu255 are key exosite determinants responsible for promoting the reactions of conformationally activated antithrombin with both factor Xa and factor IXa.  相似文献   

19.
Heparin fractions of different molecular weight and with high affinity for antithrombin were studied with respect to their ability to potentiate the inhibition of activated clotting factors by antithrombin. Inhibition of thrombin, Factor IXa and Factor XIa showed similarities in the dependence on the molecular weight of heparin and was found to decrease with decreasing molecular weight. Inactivation of Factor Xa, Factor XIIa and kallikrein was, however, less dependent on the size of the polysaccharide and, to a great extent, was potentiated even by low-molecular-weight heparin fractions that had virtually no effect on the inhibition of thrombin, Factor IXa and Factor XIa.  相似文献   

20.
We investigated the kinetics of the inhibitory action of antithrombin III and antithrombin III plus heparin during the activation of factor X by factor IXa. Generation and inactivation curves were fitted to a three-parameter two-exponentional model to determine the pseudo first-order rate constants of inhibition of factor IXa and factor Xa by antithrombin III/heparin. In the absence of heparin, the second-order rate constant of inhibition of factor Xa generated by factor IXa was 2.5-fold lower than the rate constant of inhibition of exogenous factor Xa. It appeared that phospholipid-bound factor X protected factor Xa from inactivation by antithrombin III. It is, as yet, unclear whether an active site or a nonactive site interaction between factor Xa and factor X at the phospholipid surface is involved. The inactivation of factor IXa by antithrombin III was found to be very slow and was not affected by phospholipid, calcium, and/or factor X. With unfractionated heparin above 40 ng/ml and antithrombin III at 200 nM, the apparent second-order rate constant of inhibition of exogenous and generated factor Xa were the same. Thus, in this case phospholipid-bound factor X did not protect factor Xa from inhibition. In the presence of synthetic pentasaccharide heparin, however, phospholipid-bound factor X reduced the rate constant about 5-fold. Pentasaccharide had no effect on the factor IXa/antithrombin III reaction. Unfractionated heparin (1 micrograms/ml) stimulated the antithrombin III-dependent inhibition of factor IXa during factor X activation 400-fold. In the absence of reaction components this stimulated was 65-fold. We established that calcium stimulated the heparin-dependent inhibition of factor IXa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号