首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The depth profiles and seasonal abundance of fatty acids in lipids from the particulate organic matter in the eutrophic Lake Nakanuma, Japan, were closely related to both photosynthetic activity and the distribution of phytoplankton. The changes in the relative proportions of the fatty acids suggest that their synthesis is directly related to the photosynthetic activity of phytoplankton.  相似文献   

2.
The zooplankton community in the highly eutrophic Lake Kasumigaura was investigated and its relation to a bloom of Microcystis was analyzed. The zooplankton community was dominated by small cladocerans, whose biomass and production became highest in summer, when Microcystis bloomed. The high cladoceran production is considered to depend on the production of colonial Microcystis, because the production of nannoplankton was apparently too low to ensure the cladoceran production. Microcystis cells were unsuitable as food for the cladocerans inhabiting Lake Kasumigaura, but became utilizable when decomposed. Decomposed Microcystis may be the main food for Cladocera in the lake in summer. High water temperatures occurring in summer probably promoted decomposition of the Microcystis, leading to increased production of the small cladocerans.  相似文献   

3.
The rates, products, and controls of the metabolism of fermentation intermediates in the sediments of a eutrophic lake were examined. 14C-fatty acids were directly injected into sediment subcores for turnover rate measurements. The highest rates of acetate turnover were in surface sediments (0- to 2-cm depth). Methane was the dominant product of acetate metabolism at all depths. Simultaneous measurements of acetate, propionate, and lactate turnover in surface sediments gave turnover rates of 159, 20, and 3 μM/h, respectively. [2-14C]propionate and [U-14C]lactate were metabolized to [14C]acetate, 14CO2, and 14CH4. [14C]formate was completely converted to 14CO2 in less than 1 min. Inhibition of methanogenesis with chloroform resulted in an immediate accumulation of volatile fatty acids and hydrogen. Hydrogen inhibited the metabolism of C3-C5 volatile fatty acids. The rates of fatty acid production were estimated from the rates of fatty acid accumulation in the presence of chloroform or hydrogen. The mean molar rates of production were acetate, 82%; propionate, 13%; butyrates, 2%; and valerates, 3%. A working model for carbon and electron flow is presented which illustrates that fermentation and methanogenesis are the predominate steps in carbon flow and that there is a close interaction between fermentative bacteria, acetogenic hydrogen-producing bacteria, and methanogens.  相似文献   

4.
Although DNA barcoding is a promising tool for the identification of organisms, it requires the development of a specific reference sequence library for sample application. In the present study we developed a Lake Kasumigaura, Japan, zooplankton DNA barcode library to increase the sensitivity of future zooplankton monitoring for detecting lake ecosystem condition changes. Specifically, the mitochondrial cytochrome c oxidase subunit I (mtCOI) haplotype, i.e., the primary DNA barcode, was examined for each zooplankton taxon. In crustaceans, 37 mtCOI haplotypes were obtained from 99 individuals, representing four and 15 morpho-species of Copepoda and Cladocera, respectively. Comparing these sequences with those in GenBank shows that the lake harbors putative non-indigenous species, such as Daphnia ambigua. In rotifers, 132 mtCOI haplotypes were obtained from 302 individuals, representing 11 genera and one unclassified taxon. The automatic barcode gap discovery (ABGD) algorithm separated these haplotypes into 43 species. Brachionus cf. calyciflorus was divided into five ABGD species, and different ABGD species tended to occur in different seasons. Seasonal ABGD-species succession was also observed within Polyarthra spp. and Synchaeta spp. These seasonal successions were not detected by inspections of external morphology alone. Accepting up to 7% sequence divergence within the same species, mtCOI reference sequences were available in GenBank for three, 13, and 17 species in Copepoda, Cladocera, and Rotifera, respectively. The present results, therefore, reveal the serious shortage of mtCOI reference sequences for rotifers, and underscore the urgency of developing rotifer mtCOI barcode libraries on a global scale.  相似文献   

5.
This study used high-pressure size exclusion chromatography (HPSEC) to measure the changes in molecular weight distributions of dissolved organic matter (DOM) of two Northern Michigan streams following inoculation with bacterial concentrates from the same locations. During the initial 12 h of the experiment, weight average molecular weight (M w ) of DOM decreased, as high molecular weight components were lost from solution. After 12 h, the M w of DOM increased, primarily because of a loss of intermediate to lower molecular weight components. Leucine incorporation showed little or no bacterial metabolism during the first 12 h, but metabolism increased substantially after 12 h. The initial loss of high molecular weight components during the period of little or no bacterial metabolism suggests preferential adsorption of these components to the bacterial surfaces, perhaps followed by metabolism. This suggested interpretation is consistent with previous observations of preferential adsorption of higher molecular weight components to viable but non-metabolizing Bacillus subtilis and to mineral surfaces. The latter loss of lower molecular weight components was most likely due to bacterial metabolism of the DOM, which is consistent with previous observations that lower molecular weight components are more biodegradable. The HPSEC technique uses 254 nm wavelength for detection and focuses primarily on humic- and fulvic-type components rather than low molecular weight organic molecules, such as carbohydrates. Thus, results confirmed that humic/fulvic components are biodegradable, but did not address other DOM components.  相似文献   

6.
The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4–16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot efficiently utilize tDOM and that in subarctic estuaries other factors are responsible for the removal of imported tDOM.  相似文献   

7.
Emergence of Chironomidae from the shallow eutrophic Lake Kasumigaura,Japan   总被引:1,自引:0,他引:1  
Seasonal chironomid emergence was monitored in the shallow eutrophic Lake Kasumigaura and 18 species were collected with a battery-operated light trap fixed on a floating stage and with surface emergence traps. During October–December, samples in the light trap comprised exclusively Tokunagayusurika akamusi (Tokunaga) and small numbers of one or two other species. T. akamusi, Procladuis (Holotanypus) culiciformis (L.), and Chironomus plumosus (L.) constituted 91.6% of the annual catch of chironomid adults. The predominance of T. akamusi (75.3 % of chironomid catch) and the high ratio (13) of T. akamusi to C. plumosus was more marked in this lake than other Japanese eutrophic lakes. Glyptotendipes tokunagai Sasa and Dicrotendipes pelochloris (Kieffer) were also caught abundantly with the light trap, but not with surface traps, indicating these were littoral species. The dry weight of emerging adults during May–December 1982 was 2.87 g m–2, of which 1.92 gm–2 (67%) was T. akamusi and 0.67 gm–2 (23%) C. plumosus and 0.23 g m–2 (8%) Clinotanypus sugiyamai Tokunaga and 0.03 gm–2 (1%) P. (H.) culiciformis. The weight of emerging Tanypodinae was much higher than the annual mean larval biomass or estimated larval production, which have been due to underestimating the population density using an Ekman-Birge dredge. High numbers of individuals and species of chironomids were caught during April–July, presumably as a result of the high food supply for chironomid communities.  相似文献   

8.
The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42°S and 55°S along 141°E. Bacterial abundance, mean cell volume, and [3H]thymidine and [3H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean.  相似文献   

9.
Light environment variability was investigated in the two Japanese lakes Biwa and Kasumigaura, which offer a broad range of optical conditions in the water bodies due to their diverse morphometries and limnological characteristics. To elucidate their light environments, Secchi depths (SDs) were related to long-term monitored datasets of concentrations of optically active substances (OASs) using two approaches based on statistical and mechanistic models. A good estimate for the nonphytoplanktonic suspended solids (NPSS) concentration gained using a monthly factor ?? (which represents the phytoplanktonic portion in total suspended solids) from a long-term analysis was utilized to develop robust models. Using the mechanistic model, the contribution of each OAS to the SD can be understood and investigated in more detail than possible with a statistical approach, but the statistical model yields better results in terms of SD prediction. Based on the results of an analysis of the contribution of each OAS to the SD, it was clear that NPSS was the component that exerted the most influence on the light environments in the two lakes; in this respect, this study agrees with other studies that show the importance of suspended inorganic particles as the main contributor to the SD in inland waters. Using ANOVA, we analyzed how specific inherent optical properties may have changed spatially and temporally, and the results indicated that the temporal (monthly) effect was primarily responsible for the loss of accuracy in the models. In addition, the ANOVA analysis suggested that grouping the data improved the predictive performances of the statistical models. Finally, we concluded that combining the two models yields the most reliable results in terms of SD prediction and determining the contribution of each OAS to the SD at present.  相似文献   

10.
Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R 2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.  相似文献   

11.
Although organic-aggregate-associated bacteria play a pivotal role in microbial food webs and in the cycling of major elements, their community composition and diversity have not been extensively studied, especially in shallow freshwater systems. This study is among the first to explore intra-lake horizontal heterogeneity of organic-aggregate-associated bacterial community composition (OABC) in the large, shallow, and eutrophic Lake Taihu. During November 2006, samples were collected at four locations representing different trophic states and food web structures. Regional variability of OABC and diversity were studied by amplified ribosomal DNA restriction analysis and comparative analysis of four large 16S ribosomal RNA clone libraries. Our results demonstrate that OABC were numerically dominated by members of the β-proteobacteria (19.2–38.6%), Bacteroidetes (3.6–20.0%), and α-proteobacteria (11.5–19.2%) groups. The dominance of the Bacteroidetes group was related to algae-based aggregates. Horizontal heterogeneity of OABC exists within habitats, suggesting that the trophic state of the water and the physicochemical properties of organic aggregates (OA) play a key role. Diverse bacterial communities found on OA were substantially different from free-living ones. Comparative statistical analyses of the habitats of OA-associated bacteria highlight the potential ecological importance of the exchange between OABC and the surrounding planktonic community. Lastly, we found at least 45% of sequences closely related to ones previously found in soils, sludge, sediments, and other habitats. This demonstrates that microorganisms from terrestrial and sediment habitats are an important component of OA. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants.  相似文献   

13.
Dynamics of Bacterial Sulfate Reduction in a Eutrophic Lake   总被引:9,自引:13,他引:9       下载免费PDF全文
Bacterial sulfate reduction in the surface sediment and the water column of Lake Mendota, Madison, Wis., was studied by using radioactive sulfate (35SO42−). High rates of sulfate reduction were observed at the sediment surface, where the sulfate pool (0.2 mM SO42−) had a turnover time of 10 to 24 h. Daily sulfate reduction rates in Lake Mendota sediment varied from 50 to 600 nmol of SO42− cm−3, depending on temperature and sampling date. Rates of sulfate reduction in the water column were 103 times lower than that for the surface sediment and, on an areal basis, accounted for less than 18% of the total sulfate reduction in the hypolimnion during summer stratification. Rates of bacterial sulfate reduction in the sediment were not sulfate limited at sulfate concentrations greater than 0.1 mM in short-term experiments. Although sulfate reduction seemed to be sulfate limited below 0.1 mM, Michaelis-Menten kinetics were not observed. The optimum temperature (36 to 37°C) for sulfate reduction in the sediment was considerably higher than in situ temperatures (1 to 13°C). The response of sulfate reduction to the addition of various electron donors metabolized by sulfate-reducing bacteria in pure culture was investigated. The degree of stimulation was in this order: H2 > n-butanol > n-propanol > ethanol > glucose. Acetate and lactate caused no stimulation.  相似文献   

14.
The daily vertical migration of five species;Microcystis aeruginosa (Kütz.) Trevis,Anabaena spiroides Klebahn f.crassa (L.) Elenkin,Aphanizomenon flos-aquae (L.) Ralfs,Melosira granulata (E). Ralfs, andCoscinodiscus lacustris Grun. was studied using a close-interval water sampler on a calm summer day in Lake Kasumigaura. Many colonies ofMicrocystis were observed at the middle of the water column (approx. 1.5 m depth) in the afternoon, and at the surface in the early morning.Anabaena occurred mostly in the upper layer whileAphanizomenon tended to be uniformly distributed. The difference in migration patterns suggests thatMicrocystis is superior toAnabaena andAphanizomenon in obtaining both light and nutrients from this lake. Among diatoms,Melosira remained at the bottom of the water column throughout day and night, but Coscinodiscus was uniformly distributed.  相似文献   

15.
SYNOPSIS. AS compared to integumentary uptake systems of soft-bodiedmarine invertebrates, bacterial systems, in terms of transportconstants, are much better adapted to the low concentrationsof dissolved organic nutrients encountered in coastal and offshorewaters. Bacteria respond to the presence of suitable dissolvedorganic substrates with induction, uptake and multiplication,maintaining the concentrations of dissolved organic matter (DOM)permanently low. At realistic in situ concentrations, epidermaluptake by pelagic and epibenthic animals proceeds at such lowrates that scarcely a substantial proportion of their metabolicneeds is provided by absorption. In marine sediments, wherethe life processes of bacteria and animals are closely interrelated,the macrofauna is sheltered by shells, firm tubes and burrows,which are irrigated by means of overlying water of the watercolumn. Hence, interstitial water with its sometimes higherconcentrations of DOM is scarcely available to sediment-dwellinglarger metazoans. The meiofauna mainly inhabits the few millimetersof the upper sediment layers and the thin halos surroundingirrigated macrofaunal burrows, where sufficient oxygen is available.Unless the magnitude of horizontal water movement, the amountsof diffusional nutrient supply and the percentages, by whichnutrient concentrations are reduced by meiofaunal uptake, areknown, estimations of nutritional benefits from uptake of DOMby meiofauna cannot be made. For all infaunal taxa, bacteriaappear to represent a major food supply.  相似文献   

16.
Artificial lagoons (ALs) are unique wetland treatment areas for lakes. They use enclosed river mouth areas to retain pollutants, and they mimic the small natural lagoons rimming large lakes, functioning as habitats and limiting the entry of diffuse (non-point-source) pollutants from the river basins. Four ALs have been installed in Lake Kasumigaura (~60 km northeast of Tokyo) since 1998. We evaluated the performance of these ALs as treatment facilities. Rates of removal ranged from 8.2% to 44% for chemical oxygen demand (CODMn), from 0.9% to 8.7% for TN, and from 9% to 55% for TP. The long-term rate of pollutant removal was proportional to the average hydraulic retention time and declined exponentially with increasing hydraulic loading rate (annual discharge/area) and loading rate (annual load/area). The ratio of AL surface area to watershed area was also correlated with AL performance, as occurs in stormwater treatment wetlands, although the ratios were much smaller than those in stormwater treatment wetlands. Our results can be used as preliminary design tools for ALs, on the understanding that the data were obtained only from Lake Kasumigaura and should therefore be applied carefully.  相似文献   

17.
Sunlight reacts with dissolved organic matter (DOM) modifying its availability as bacterial substrate. We assessed the impact of DOM photoproducts and mineral nutrient supply on bacterial growth in seven inland waters from the South of Spain, where DOM is characterized by low chromophoric content and long residence time. Factorial experiments were performed with presence vs absence of DOM photoproducts and mineral nutrient supply. In six of the seven experiments, we found a significant and negative effect of DOM photoproducts on bacterial growth and a significant and positive effect of mineral nutrient supply. The interaction of these two factors leaded to a compensation of negative effects of photoproducts by availability of mineral nutrients. Dissolved organic matter diagenetic status and the ionic environment where organic carbon is dissolved can be influencing bacterial DOM processing.  相似文献   

18.
To evaluate the role of dissolved organic matter (DOM) on microbial community metabolism, we established extracellular enzyme activity (EEA) and substrate-induced respiration (SIR) profiles of sediment samples collected from littoral and profundal regions of the western, central, and eastern basins of Lake Erie. Lake Erie is spatially structured such that the central and western basins receive relatively major inputs of allochthonous DOM in comparison to the eastern basin. Overall, spatial patterns of EEA and SIR profiles suggest both greater metabolic diversity and activity in the littoral regions of the central and western basins. In contrast, the eastern basin demonstrated much less structuring between littoral and profundal areas. To evaluate whether the observed spatial patterns are the result of microbial community adaptations to local DOM availability, we performed three experimental treatments by inoculating sediment samples with polyvinylpyrrolidone, which sequesters large polyphenols, or with either vanillin or catechol, two small phenolic compounds. Our results revealed that esterase and glycosidase EEA from the eastern basin were induced by small phenolics and inhibited by large polyphenols. In contrast, the addition of small phenolics decreased esterase and glycosidase activities from the central basin, while polyphenols had a negligible effect. These results suggest that the source and composition of DOM play a significant role in the local adaptation of microbial communities, determining large-scale spatial patterns of microbial functional diversity in Lake Erie sediments.  相似文献   

19.
To understand the long-term and local variations of bacteria under the influence of annually re-occurred water bloom, bacterial community composition (BCC) was investigated monthly for 3 years (2009–2011) at four different sites located across Lake Taihu. The bacterial community composition was analyzed by 16S rRNA gene clone libraries and terminal restriction fragment length polymorphism. Co-occurrence patterns among bacterial taxa and environmental variables were determined through network analysis. Overall, strong seasonal variation patterns of BCC were observed whilst the spatial variations of BCC were slight in the long-term observation. However, core species bacteria persisted throughout the annual variations. Network analysis showed that the highly connected operational taxonomic units in bacteria-environment network included both the numerically dominant taxa and some functional groups with low abundance, such as Methylophilaceae and Nitrospira. Co-occurrence networks further revealed that the correlations of bacteria-bacteria could be more critical than those between environment and bacteria in structuring microbial communities, and would be a crucial driving factor of BCC in Lake Taihu.  相似文献   

20.
It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium''s integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter−1 or 100 μg liter−1. Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter−1, the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter−1 linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter−1 linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号