首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IkappaBalpha ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity-ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.  相似文献   

2.
The NEDD8 pathway plays an essential role in various physiological processes, such as cell cycle progression and signal transduction. The conjugation of NEDD8 to target proteins is initiated by the NEDD8-activating enzyme composed of APP-BP1 and Uba3. In the present study, we show that APP-BP1 is degraded by ubiquitin-dependent proteolysis. To study biological functions of TRIP12, a HECT domain-containing E3 ubiquitin ligase, we used the yeast two-hybrid system and identified APP-BP1 as its binding partner. Immunoprecipitation analysis showed that TRIP12 specifically interacts with the APP-BP1 monomer but not with the APP-BP1/Uba3 heterodimer. Overexpression of TRIP12 enhanced the degradation of APP-BP1, whereas knockdown of TRIP12 stabilized it. In vitro ubiquitination assays revealed that TRIP12 functions as an E3 enzyme of APP-BP1 and additionally requires an E4 activity for polyubiquitination of APP-BP1. Moreover, neddylation of endogenous CUL1 was increased in TRIP12 knockdown cells, while complementation of the knockdown cells with TRIP12 lowered neddylated CUL1. Our data suggest that that TRIP12 promotes degradation of APP-BP1 by catalyzing its ubiquitination, which in turn modulates the neddylation pathway.  相似文献   

3.
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.  相似文献   

4.
5.
A cyclometallated rhodium(III) complex [Rh(ppy)2(dppz)]+ (1) (where ppy = 2-phenylpyridine and dppz = dipyrido[3,2-a:2′,3′-c]phenazine dipyridophenazine) has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE). The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.  相似文献   

6.
7.
《Autophagy》2013,9(11):1677-1679
The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.  相似文献   

8.
The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.  相似文献   

9.
While neddylation is known to activate cullin (CUL)-RING ubiquitin ligases (CRLs), its role in regulating T cell signaling is poorly understood. Using the investigational NEDD8 activating enzyme (NAE) inhibitor, MLN4924, we found that neddylation negatively regulates T cell receptor (TCR) signaling, as its inhibition increases IL-2 production, T cell proliferation and Treg development in vitro. We also discovered that loss of CUL neddylation occurs upon TCR signaling, and CRLs negatively regulate IL-2 production. Additionally, we found that tyrosine kinase signaling leads to CUL deneddylation in multiple cell types. These studies indicate that CUL neddylation is a global regulatory mechanism for tyrosine kinase signaling.  相似文献   

10.
Modification of proteins with ubiquitin and ubiquitin-like molecules is involved in the regulation of almost every biological process. Historically, each conjugation pathway has its unique set of E1, E2 and E3 enzymes that lead to activation and conjugation of their cognate molecules. Here, we present the unexpected finding that under stress conditions, the ubiquitin E1 enzyme Ube1 mediates conjugation of the ubiquitin-like molecule NEDD8. Inhibition of the 26S proteasome, heat shock and oxidative stress cause a global increase in NEDDylation. Surprisingly, this does not depend on the NEDD8 E1-activating enzyme, but rather on Ube1. A common event in the tested stress conditions is the depletion of “free” ubiquitin. A decrease in “free” ubiquitin levels in the absence of additional stress is sufficient to stimulate NEDDylation through Ube1. Further analysis on the NEDD8 proteome shows that the modified NEDDylated proteins are simultaneously ubiquitinated. Mass spectrometry on the complex proteome under stress reveals the existence of mixed chains between NEDD8 and ubiquitin. We further show that NEDDylation of the p53 tumor suppressor upon stress is mediated mainly through Ube1. Our studies reveal an unprecedented interplay between NEDD8 and ubiquitin pathways operating in diverse cellular stress conditions.  相似文献   

11.
Cationic amino acid transporter 1 (CAT-1) is responsible for the bulk of the uptake of cationic amino acids in most mammalian cells. Activation of protein kinase C (PKC) leads to down-regulation of the cell surface CAT-1. To examine the mechanisms of PKC-induced down-regulation of CAT-1, a functional mutant of CAT-1 (CAT-1-HA-GFP) was generated in which a hemagglutinin antigen (HA) epitope tag was introduced into the second extracellular loop and GFP was attached to the carboxyl terminus. CAT-1-HA-GFP was stably expressed in porcine aorthic endothelial and human epithelial kidney (HEK) 293 cells. Using the HA antibody internalization assay we have demonstrated that PKC-dependent endocytosis was strongly inhibited by siRNA depletion of clathrin heavy chain, indicating that CAT-1-HA-GFP internalization requires clathrin-coated pits. Internalized CAT-1-HA-GFP was accumulated in early, recycling, and late endosomes. PKC activation also resulted in ubiquitination of CAT-1. CAT-1 ubiquitination and endocytosis in phorbol ester-stimulated porcine aorthic endothelial and HEK293 cells were inhibited by siRNA knockdown of NEDD4-2 and NEDD4-1 E3 ubiquitin ligases, respectively. In contrast, ubiquitination and endocytosis of the dopamine transporter was dependent on NEDD4-2 in all cell types tested. Altogether, our data suggest that ubiquitination mediated by NEDD4-2 or NEDD4-1 leading to clathrin-mediated endocytosis is the common mode of regulation of various transporter proteins by PKC.  相似文献   

12.
IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.  相似文献   

13.
Tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 have growth-stimulating activity for a wide range of cell types. Ras, which comprises a family of three members, i.e, Ha-Ras, Ki-Ras, and H-Ras, is known to participate in growth control in all its facets, including cell proliferation, transformation, differentiation, and apoptosis. In this study, we tested the hypothesis that Ras might be involved in the cell growth-promoting activity of TIMPs. Using MG-63 human osteosarcoma cells, we demonstrated that both TIMP-1 and TIMP-2 caused an increase in the Ras-GTP level in a dose-dependent manner. Our previous results indicated that TIMP-1 activity is mediated through the tyrosine kinase (TYK)/mitogen-activated protein kinase (MAPK) pathway. Here, we demonstrated that Ras activation by TIMP-1 was inhibited by a specific TYK inhibitor, herbimycin A, suggesting that the TYK/MAPK signaling pathway was involved in Ras activation by TIMP-1. However, the activation of Ras by TIMP-2 was inhibited by an inhibitor specific for cyclic AMP-dependent protein kinase (PKA), H89, suggesting the involvement of the PKA-mediated pathway. Furthermore, TIMP-2 promoted the formation of a complex between Ras-GTP and phosphoinositide 3-kinase.  相似文献   

14.
Chen X  Li Y  Wei K  Li L  Liu W  Zhu Y  Qiu Z  He F 《The Journal of biological chemistry》2003,278(49):49022-49030
Hepatopoietin (HPO) is a novel hepatotrophic growth factor that stimulates hepatocyte proliferation by two pathways. In the first, intracellular HPO specifically modulates the activator protein-1 (AP-1) pathway through JAB1 (Jun activation domain-binding protein 1), whereas in the second, extracellular HPO triggers the mitogen-activated protein kinase pathway by binding its specific receptor on the cell surface. In this report we demonstrate that HPO is a flavin-linked sulfhydryl oxidase, and the invariant CXXC (Cys-Xaa-Xaa-Cys) motif in HPO is essential for the enzyme activity of HPO but not for its dimerization nor for its binding ability with JAB1. Two intramolecular disulfides were identified in HPO by mass spectrometry, one of which is formed by the redox CXXC cysteine residues. HPO site-directed mutants (Cys/Ser) at active sites, which lost sulfhydryl oxidase activity, could not increase c-Jun phosphorylation and failed to potentiate JAB1-mediated AP-1 activation. However, the mutants still have mitogenic stimulation and mitogen-activated protein kinase activation effects on HepG2 cells. Thus, it can be concluded that the potentiation role of HPO on AP-1 is dependent on its sulfhydryl oxidase activity.  相似文献   

15.
Macrophage migration inhibitory factor (MIF) is a 12.5 kD polypeptide that serves as a critical regulator of cell functions such as gene expression, proliferation or apoptosis. However, the signal transduction pathways through which MIF takes part in cellular regulation are only incompletely understood. MIF leads to CD74-dependent "sustained" activation of ERK1/2 MAPK, but MIF's role in "transient" ERK activation and the involved upstream pathways are unknown. Here we report that the transient ERK pathway was markedly activated by MIF. This effect involved the phosphorylation and activation of Raf-1, MEK, ERK, and Elk-1. Of note, rapid and transient ERK phosphorylation by MIF was measurable in MIF-deficient cells, suggesting that MIF acted in a non-autocrine fashion. Applying the inhibitor genistein, a tyrosine kinase (TPK) activity was identified as a critical upstream signalling event in MIF-induced transient ERK signalling. Experiments using the Src kinase inhibitor PP2 indicated that the involved TPK was a Src-type tyrosine kinase. A role for an upstream Src kinase was proven by applying Src-deficient cells which did not exhibit transient ERK activation upon treatment with MIF, but in which MIF-induced ERK signalling could be restored by re-expressing Src. Intriguingly, JAB1/CSN5, a signalosome component, cellular binding protein of MIF and regulator of cell proliferation and survival, had a marked, yet dual, effect on MIF-induced ERK signalling. JAB1 overexpression inhibited sustained, but not transient, ERK phosphorylation. By contrast, JAB1-knock-down by siRNA revealed that minimum JAB1 levels were necessary for transient activation of ERK by MIF. In conclusion, MIF rapidly and transiently activates the ERK pathway, an effect that has not been recognized previously. This signalling pathway involves the upstream activation of a Src-type kinase and is co-regulated by the cellular MIF binding protein JAB1/CSN5. Our study thus has unravelled a novel MIF-driven signalling pathway and an intricate regulatory system involving extra- and possibly intracellular MIF, and which likely critically participates in controlling cell proliferation and survival.  相似文献   

16.
A ubiquitin-like modifier, NEDD8, is covalently attached to cullin-family proteins, but its physiological role is poorly understood. Here we report that the NEDD8-modifying pathway is essential for cell viability and function of Pcu1 (cullin-1 orthologue) in fission yeast. Pcu1 assembled on SCF ubiquitin-ligase was completely modified by NEDD8. Pcu1(K713R) defective for NEDD8 conjugation lost the ability to complement lethality due to pcu1 deletion. Forced expression of Pcu1(K713R) or depletion of NEDD8 in cells resulted in impaired cell proliferation and marked stabilization of the cyclin-dependent kinase inhibitor Rum1, which is a substrate of the SCF complex. Based on these findings, we propose that covalent modification of cullin-1 by the NEDD8 system plays an essential role in the function of SCF in fission yeast.  相似文献   

17.
Neddylation, a post-translational modification that conjugates an ubiquitin-like protein NEDD8 to substrate proteins, is an important biochemical process that regulates protein function. The best-characterized substrates of neddylation are the cullin subunits of Cullin-RING ligases (CRLs), which, as the largest family of E3 ubiquitin ligases, control many important biological processes, including tumorigenesis, through promoting ubiquitylation and subsequent degradation of a variety of key regulatory proteins. Recently, increasing pieces of experimental evidence strongly indicate that the process of protein neddylation modification is elevated in multiple human cancers, providing sound rationale for its targeting as an attractive anticancer therapeutic strategy. Indeed, neddylation inactivation by MLN4924 (also known as pevonedistat), a small molecule inhibitor of E1 NEDD8-activating enzyme currently in phase I/II clinical trials, exerts significant anticancer effects by inducing cell cycle arrest, apoptosis, senescence and autophagy in a cell-type and context dependent manner. Here, we summarize the latest progresses in the field with a major focus on preclinical studies in validation of neddylation modification as a promising anticancer target.  相似文献   

18.
Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection.  相似文献   

19.
Cullin proteins assemble a large number of RING E3 ubiquitin ligases and regulate various physiological processes. Covalent modification of cullins by the ubiquitin-like protein NEDD8 activates cullin ligases through an as yet undefined mechanism. We show here that p120(CAND1) selectively binds to unneddylated CUL1 and is dissociated by CUL1 neddylation. CAND1 formed a ternary complex with CUL1 and ROC1. CAND1 dissociated SKP1 from CUL1 and inhibited SCF ligase activity in vitro. Suppression of CAND1 in vivo increased the level of the CUL1-SKP1 complex. We suggest that by restricting SKP1-CUL1 interaction, CAND1 regulated the assembly of productive SCF ubiquitin ligases, allowing a common CUL1-ROC core to be utilized by a large number of SKP1-F box-substrate subcomplexes.  相似文献   

20.
The interleukin-10 (IL-10) activation of Janus kinase (JAK) family members (JAK1/TYK2) and IL-10E1 is subsequently inactivated by approximately 3-4 h in primary prostate tumor lines. We examined the effect of proteasome inhibition on IL-10 activation of the IL-10E1 pathway following stimulation of HPCA-10a cells. Treatment of HPCA-10a cells with the proteasome inhibitor, N-acetyl-L-leucinyl-L-leucinyl-norleucinal (LLnL), led to stable tyrosine phosphorylation of the IL-10 receptor and IL-10E1 following stimulation. Further investigation showed that these stable phosphorylation events were the result of prolonged activation of JAK1 and TYK2 plus IL-10E1. IL-10E1 signaling normally induced the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and LLnL treatment of the HPCA-10a and HPCA-10c cells significantly enhanced IL-10 induction of TIMP-1 levels to block tumor cell invasion in modified Boyden chamber invasion assays. These observations were confirmed using pharmacologic inhibitors by Western blot and ELISAs. In the presence of LLnL, stable phosphorylation of IL-10E1 and induction of TIMP-1 was abrogated if the tyrosine kinase inhibitor, staurosporine, was added. The effect of staurosporine on IL-10E1 phosphorylation and TIMP-1 could be overcome if the phosphatase inhibitor, vanadate, was also added, suggesting that phosphorylated IL-10E1 could be stabilized by phosphatase, but not by proteasome inhibition. These observations are consistent with the hypothesis that proteasome-mediated protein degradation can modulate the activity of the IL-10E1 pathway and TIMP-1 induction by regulating the deactivation of JAK1/TYK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号