首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Maize rough dwarf disease (MRDD), caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV), the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.  相似文献   

4.
The P9-1 protein of Rice black-streaked dwarf virus (RBSDV) is an essential part of the viroplasm. However, little is known about its nature or biological function in the viroplasm. In this study, the structure and function of P9-1 were analyzed for in vitro binding to nucleic acids. We found that the P9-1 protein preferentially bound to single-stranded versus double-stranded nucleic acids; however, the protein displayed no preference for RBSDV versus non-RBSDV single-stranded ssRNA (ssRNA). A gel mobility shift assay revealed that the RNA gradually shifted as increasing amounts of P9-1 were added, suggesting that multiple subunits of P9-1 bind to ssRNA. By using discontinuous blue native gel and chromatography analysis, we found that the P9-1 protein was capable of forming dimers, tetramers, and octamers. Strikingly, we demonstrated that P9-1 preferentially bound to ssRNA in the octamer, rather than the dimer, form. Deletion of the C-terminal arm resulted in P9-1 no longer forming octamers; consequently, the deletion mutant protein bound to ssRNA with significantly lower affinity and with fewer copies bound per ssRNA. Alanine substitution analysis revealed that electropositive amino acids among residues 25 to 44 are important for RNA binding and map to the central interior structure that was formed only by P9-1 octamers. Collectively, our findings provide novel insights into the structure and function of RBSDV viroplasm protein P9-1 binding to RNA.  相似文献   

5.
玉米是重要的粮食作物,水稻黑条矮缩病毒(RBSDV)是玉米粗缩病的病原,由其引起的玉米粗缩病给玉米生产造成重大损失。利用人工mi RNA构建抗病毒植物的技术已经在多种植物中被证明有效,但是在玉米中的尝试未见报道。实验根据玉米zea-mi R159a的前体序列和RBSDV基因组中编码功能蛋白的基因和基因沉默抑制子的序列信息设计引物,构建了用于沉默RBSDV编码基因和基因沉默抑制子的ami RNA(Artificial mi RNA)基因。构建p CAMBIA3301-121-ami RNA植物表达载体,利用农杆菌介导法转化玉米自交系综31(Z31)。对转基因玉米进行分子检测,选择mi RNA表达量高的纯合体株系进行自然发病实验,按0-4的分级标准调查玉米粗缩病的严重度。结果表明,转抗粗缩病毒人工mi RNA载体玉米纯合体株系的抗病表现好于野生型玉米,其中针对基因组6的S6-mi R159转基因玉米抗病情况较好。研究表明利用人工mi RNA技术构建抗病毒病玉米新品种是可行的。  相似文献   

6.
ARGONAUTE (AGO) proteins play crucial roles in plant defence against virus invasion. To date, the role of OsAGO2 in rice antiviral defence remains largely unknown. In this study, we determined that the expression of OsAGO2 in rice was induced upon rice black-streaked dwarf virus (RBSDV) infection. Using transgenic rice plants overexpressing OsAGO2 and Osago2 mutants generated through transposon-insertion or CRISPR/Cas9 technology, we found that overexpression of OsAGO2 enhanced rice susceptibility to RBSDV infection. Osago2 mutant lines exhibited strong resistance to RBSDV infection through the elicitation of an early defence response, including reprogramming defence gene expression and production of reactive oxygen species (ROS). Compared to Nipponbare control, the expression level of OsHXK1 (HEXOKINASE 1) increased significantly, and the methylation levels of its promoter decreased in the Osago2 mutant on RBSDV infection. The expression profile of OsHXK1 was the opposite to that of OsAGO2 during RBSDV infection. Overexpression of OsHXK1 in rice also induced ROS production and enhanced rice resistance to RBSDV infection. These results indicate that OsHXK1 controls ROS accumulation and is regulated by OsAGO2 through epigenetic regulation. It is noteworthy that the Osago2 mutant plants are also resistant to southern rice black-streaked dwarf virus infection, another member of the genus Fijivirus. Based on the results presented in this paper, we conclude that OsAGO2 modulates rice susceptibility to fijivirus infection by suppressing OsHXK1 expression, leading to the onset of ROS-mediated resistance. This discovery may benefit future rice breeding programmes for virus resistance.  相似文献   

7.
In flowering plants, male gametophytes are generated in anthers from microsporocytes. However, more evidence is needed to reveal the genetic mechanisms which regulate the differentiation and interaction of these highly specialized cells in anthers. Here we report the characterization of a series of male-sterile cotton (Gossypium hirsutum) mutants, including mutants with normal fertility, semi-sterility and complete sterility. These mutants are forms of transgenic cotton containing RNAi vectors with partial cDNA fragments of GhSERK1. The GhSERK1 gene encodes a putative leucine-rich repeat receptor protein kinase (LRR-RLK), and generally has 11 domains. In previous research, we found plants containing GhSERK1 produce an abundance of male reproductive tissue. In this paper, three RNAi constructs were designed separately to analyze its function in anther. After the three RNAi vectors were transformed into the cotton, transgenic plants with the specialized fragment exhibited normal fertility or the pollen energy decreased slightly, as ones with the homologous fragments exhibited various degrees of male sterility with different expression levels of GhSERK1 mRNA. In conclusion, for the transgenic plants with conserved fragments, lower expression levels of GhSERK1 mRNA were in transgenic plants, and a higher degree of male sterility was observed. Taking together, these findings demonstrate the GhSERK1 gene has a role in the development of anthers, especially in the formation of pollen grains. Also, we infer there must be another homolog of GhSERK1 in cotton, and both of GhSERK1 and its homolog function redundantly as important control points in controlling anther pollen production.  相似文献   

8.
Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.  相似文献   

9.
The enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is severely hampered by lignins. Here, we analyzed transgenic poplars (Populus tremula × Populus alba) expressing the Brachypodium (Brachypodium distachyon) p-coumaroyl-Coenzyme A monolignol transferase 1 (BdPMT1) gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase (AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p-coumaric acid (pCA). Several BdPMT1-OE/WT and BdPMT1-OE/AtF5H-OE lines were grown in the greenhouse, and BdPMT1 expression in xylem was confirmed by RT-PCR. Analyses of poplar stem cell walls (CWs) and of the corresponding purified dioxan lignins (DLs) revealed that BdPMT1-OE lignins were as p-coumaroylated as lignins from C3 grass straws. For some transformants, pCA levels reached 11 mg·g−1 CW and 66 mg·g−1 DL, exceeding levels in Brachypodium or wheat (Triticum aestivum) samples. This unprecedentedly high lignin p-coumaroylation affected neither poplar growth nor stem lignin content. Interestingly, p-coumaroylation of poplar lignins was not favored in BdPMT1-OE/AtF5H-OE transgenic lines despite their high frequency of syringyl units. However, lignins of all BdPMT1-OE lines were structurally modified, with an increase of terminal unit with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-coumaroylation of poplar samples improved the saccharification yield of alkali-pretreated CW, demonstrating that the genetically driven p-coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to alkaline treatments used during the industrial processing of lignocellulosics.

The expression of a grass p-coumaroyl-CoA:monolignol transferase induces high p-coumaroylation of poplar lignins and better saccharification of alkali-pretreated poplar wood without growth penalty.  相似文献   

10.
The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.  相似文献   

11.
12.
13.
Plant mitochondria include gamma-type carbonic anhydrases (γCAs) of unknown function. In Arabidopsis, the γCAs form a gene family of five members which all are attached to the NADH dehydrogenase complex (complex I) of the respiratory chain. Here we report a functional analysis of gamma carbonic anhydrase 2 (CA2). The gene encoding CA2 is constitutively expressed in all plant organs investigated but it is ten fold induced in flowers, particularly in tapetal tissue. Ectopic expression of CA2 in Arabidopsis causes male sterility in transgenic plants. In normal anther development, secondary thickenings of the endothecial cell wall cause anthers to open upon dehydration. Histological analyses revealed that abnormal secondary thickening prevents anther opening in 35S::CA2 transgenic plants. CA2 abundance in transgenic plants is increased 2–3 fold compared to wild-type plants as revealed by Western blotting analyses. Moreover, abundance of other members of the CA family, termed CA3 and CAL2, is increased in transgenic plants. Oxygen uptake measurements revealed that respiration in transgenic plants is mainly based on NADH reduction by the alternative NADH dehydrogenases present in plant mitochondria. Furthermore, the formation of reactive oxygen species (ROS) is very low in transgenic plants. We propose that reduction in ROS inhibits H2O2 dependent lignin polymerization in CA2 over-expressing plants, thereby causing male sterility. Gene bank accession number: AY085025 (At1g47260).  相似文献   

14.
15.
Lignocellulosic materials are potential renewable sources of fermentable sugars for bioethanol production. In this study, we used the CcAbf62A gene encoding CcAbf62A, a putative extracellular α-L-arabinofuranosidase, cloned from the mycotrophic basidiomycete Coprinopsis cinerea. CcAbf62A acts on arabinoxylan, the major hemicellulose of grasses, releasing arabinose. CcAbf62A was introduced into rice with the aim of enhancing delignification efficiency and the availability of lignocellulosic materials without reducing lignin content. Among the 32 lines of regenerated transgenic rice, 13 exhibited markedly disrupted elongation growth and excessive tillering (dwarf), seven showed delayed elongation growth (retarded-growth), and 12 showed phenotypes similar to those of control plants (normal). Additionally, the dwarf lines showed reduced acclimation. RT-PCR analysis revealed that dwarf lines had higher levels of CcAbf62A expression than retarded-growth and normal lines. Although the lignin content of transgenic rice plants expressing CcAbf62A did not differ significantly from that of control rice plants, dwarf lines were characterized by delayed deposition of lignin in the culms compared with the controls. The reduced acclimation ability of dwarf lines is believed to be associated with increased water loss and reduced water conductivity concomitant with delayed lignin deposition. Contrary to expectations, the alkaline delignification rates of dwarf and retarded-growth Abf lines were slightly lower than those of control rice plants. Our findings indicate that CcAbf62A reduces ferulate-lignin cross-links by detaching arabinose side chains from arabinoxylan and increases the relative abundance of alkaline-resistant benzyl ether cross-links. CcAbf62A is anticipated to provide new approaches for breeding plants containing altered lignocellulosic materials or lodging-resistant crops.  相似文献   

16.
The Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a key enzyme in lignin biosynthesis in plants. In this study we cloned the full-length cDNA of the Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene from jute using homology clone (primers were designed according to the sequence of CCoAOMT gene of other plants), and a modified RACE technique, subsequently named “CcCCoAOMT1”. Bioinformatic analyses showed that the gene is a member of the CCoAOMT gene family. Real-time PCR analysis revealed that the CcCCoAOMT1 gene is constitutively expressed in all tissues, and the expression level was greatest in stem, followed by stem bark, roots and leaves. In order to understand this gene's function, we transformed it into Arabidopsis thaliana; integration (one insertion site) was confirmed following PCR and southern hybridization. The over-expression of CcCCoAOMT1 in these transgenic A.thaliana plants resulted in increased plant height and silique length relative to non-transgenic plants. Perhaps the most important finding was that the transgenic Arabidopsis plants contained more lignin (20.44–21.26%) than did control plants (17.56%), clearly suggesting an important role of CcCCoAOMT1 gene in lignin biosynthesis. These data are important for the success of efforts to reduce jute lignin content (thereby increasing fiber quality) via CcCCoAOMT1 gene inhibition.  相似文献   

17.
该研究利用海岛棉‘新海21’和陆地棉ND203以及模式植物拟南芥,通过转基因及荧光定量检测等方法探究海岛棉GbHCT13基因(GenBank 登录号MW048849)在纤维发育中的功能。结果显示:(1)成功构建重组载体pCAMBIA3301 GbHCT13,经农杆菌介导法转化、除草剂抗性基因筛选、荧光定量检测方法鉴定获得转GbHCT13基因拟南芥T3代植株4株;qRT PCR检测表明,转基因植株中GbHCT13基因表达量较野生型极显著增加。(2)转基因拟南芥过表达GbHCT13基因使植株同一时期的生长较野生型旺盛,株形、叶片数、抽薹数和茎秆表皮毛数量均与野生型存在差异;组织化学分析发现,转GbHCT13基因的拟南芥较野生型茎秆初生木质部生长活跃,导管增粗,次生木质部导管细胞壁横截面积变大,但髓质细胞无明显变化;过表达GbHCT13使拟南芥中木质素合成途径基因发生不同程度改变,其中CADCCoAOMTPAL和4CLGbHCT13基因的表达呈正相关。(3)经大田筛选、分子鉴定,成功获得转GbHCT13基因棉花植株3株;转GbHCT13基因棉花的棉纤维伸长率增加,纤维强度增大;沉默GbHCT13基因使棉花植株木质素含量降低,茎秆表皮毛数量减少,木质部导管细胞数量减少,导管细胞壁中木质素沉积量降低,而棉株并未发生株高上的明显矮化现象,且木质素合成通路中的CADCCoAOMTCCRPAL 4个基因的表达均呈降低趋势,说明抑制GbHCT13使得棉花生长代谢受阻,影响纤维发育起始。研究表明,GbHCT13基因能影响棉花植株中木质素合成从而调控纤维的生长发育,其功能与GbHCT13基因在模式植物拟南芥中的基本一致。  相似文献   

18.
Thermosensitive male sterility plays an important role in wheat fertility and production. As a key enzyme for chlorophyll degradation, pheophorbide a oxygenase (PaO) can suppress cell death in plants. We cloned the wheat gene TaPaO1 from the thermosensitive genetic male sterile (TGMS) line BS366; it encodes a typical PaO protein, containing a conserved Rieske [2Fe-2S] iron–sulphur motif, a mononuclear non-heme iron-binding motif, and a C-terminal CxxC motif. TaPaO1 was expressed in all tissues and was upregulated during the meiosis stage of BS366 anthers under low temperature. Subcellular localization of TaPaO1 specifically labelled the surrounding of chloroplasts. TaPaO1 regulated by RD29A promoter which responded to low temperature led to pollen sterility in transgenic tobacco. Expression analysis showed that TaPaO1 exhibited a higher level of expression in the anther than in other tissues in transgenic tobacco plants during low temperature treatment. We propose that the higher senescence-related activity of TaPaO1 may lead to the cell death of anthers, which happens at an early developmental stage under low temperature. These results provide new insights into the function of PaO during the early developmental stage of anthers. PaO is closely related to cell death regardless of whether it exhibits increased activity or inactive.  相似文献   

19.
A transgenic male sterile line of upland cotton was generated by the ectopic expression of the monooxygenase (MNX) gene from Arabidopsis thaliana via Agrobacterium-mediated transformation. The bacterium harbored a plasmid pBinplus carrying a 1.25-kb MNX coding sequence together with a GUS reporter gene; the former was driven by the MS2 promoter of a male sterility gene in Arabidopsis, and the latter was under the control of CaMV 35S promoter. Twenty-seven putative transgenic plants (T0) were obtained, all of which showed GUS activity and positive signals of NPTII and MNX genes by PCR analysis, and also showed male sterility to some extent. It was further confirmed by Southern blotting that one copy of the NPTII and MNX gene was integrated in the genome of the plants which expressed male sterility to a higher degree. Northern blotting assay also demonstrated that the transgenes stably transcribed in the genome of the transgenic plants in F4 generation. The male sterile plants usually display lower plant height, shortened internodes, shrunken anthers without pollen grains or with some abortive pollen grains, and unusual leaves with deeper multi-lobes. Microscope observations on the meiosis processes of pollen mother cells (PMCs) showed that the abortion of pollen grains mainly resulted from abnormalities of meiosis such as direct degeneration of PMCs, degenerations of dyad and tetrads, amitosis, lagging chromosomes, and the multi-polar segregations of chromosomes and so on. This study indicates a method of developing novel cotton male sterile materials for potential application in agriculture and for engineering of male sterility in other important crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号