首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

We aimed to determine the effect of feeding transgenic maize to sows during gestation and lactation on maternal and offspring immunity and to assess the fate of transgenic material.

Methodology/Principal Findings

On the day of insemination, sows were assigned to one of two treatments (n = 12/treatment); 1) non-Bt control maize diet or 2) Bt-MON810 maize diet, which were fed for ∼143 days throughout gestation and lactation. Immune function was assessed by leukocyte phenotyping, haematology and Cry1Ab-specific antibody presence in blood on days 0, 28 and 110 of gestation and at the end of lactation. Peripheral-blood mononuclear cell cytokine production was investigated on days 28 and 110 of gestation. Haematological analysis was performed on offspring at birth (n = 12/treatment). Presence of the cry1Ab transgene was assessed in sows'' blood and faeces on day 110 of gestation and in blood and tissues of offspring at birth. Cry1Ab protein presence was assessed in sows'' blood during gestation and lactation and in tissues of offspring at birth. Blood monocyte count and percentage were higher (P<0.05), while granulocyte percentage was lower (P<0.05) in Bt maize-fed sows on day 110 of gestation. Leukocyte count and granulocyte count and percentage were lower (P<0.05), while lymphocyte percentage was higher (P<0.05) in offspring of Bt maize-fed sows. Bt maize-fed sows had a lower percentage of monocytes on day 28 of lactation and of CD4+CD8+ lymphocytes on day 110 of gestation, day 28 of lactation and overall (P<0.05). Cytokine production was similar between treatments. Transgenic material or Cry1Ab-specific antibodies were not detected in sows or offspring.

Conclusions/Significance

Treatment differences observed following feeding of Bt maize to sows did not indicate inflammation or allergy and are unlikely to be of major importance. These results provide additional data for Bt maize safety assessment.  相似文献   

2.
The objective of this study was to investigate if feeding genetically modified (GM) MON810 maize expressing the Bacillus thuringiensis insecticidal protein (Bt maize) had any effects on the porcine intestinal microbiota. Eighteen pigs were weaned at ~28 days and, following a 6-day acclimatization period, were assigned to diets containing either GM (Bt MON810) maize or non-GM isogenic parent line maize for 31 days (n = 9/treatment). Effects on the porcine intestinal microbiota were assessed through culture-dependent and -independent approaches. Fecal, cecal, and ileal counts of total anaerobes, Enterobacteriaceae, and Lactobacillus were not significantly different between pigs fed the isogenic or Bt maize-based diets. Furthermore, high-throughput 16S rRNA gene sequencing revealed few differences in the compositions of the cecal microbiotas. The only differences were that pigs fed the Bt maize diet had higher cecal abundance of Enterococcaceae (0.06 versus 0%; P < 0.05), Erysipelotrichaceae (1.28 versus 1.17%; P < 0.05), and Bifidobacterium (0.04 versus 0%; P < 0.05) and lower abundance of Blautia (0.23 versus 0.40%; P < 0.05) than pigs fed the isogenic maize diet. A lower enzyme-resistant starch content in the Bt maize, which is most likely a result of normal variation and not due to the genetic modification, may account for some of the differences observed within the cecal microbiotas. These results indicate that Bt maize is well tolerated by the porcine intestinal microbiota and provide additional data for safety assessment of Bt maize. Furthermore, these data can potentially be extrapolated to humans, considering the suitability of pigs as a human model.  相似文献   

3.
A total of 72 male weaned pigs were used in a 110-day study to investigate the effect of feeding genetically modified (GM) Bt MON810 maize on selected growth and health indicators. It was hypothesised that in pigs fed Bt maize, growth and health are not impacted compared with pigs fed isogenic maize-based diets. Following a 12-day basal period, pigs (10.7 ± 1.9 kg body weight (BW); ∼40 days old) were blocked by weight and ancestry and randomly assigned to treatments: (1) non-GM maize diet for 110 days (non-GM), (2) GM maize diet for 110 days (GM), (3) non-GM maize diet for 30 days followed by GM maize diet up to day 110 (non-GM/GM) and (4) GM maize diet for 30 days followed by non-GM maize diet up to day 110 (GM/non-GM). BW and daily feed intake were recorded on days 0, 30, 60 and 110 (n = 15). Body composition was determined by dual energy X-ray absorptiometry (n = 10) on day 80. Following slaughter on day 110, organs and intestines were weighed and sampled for histological analysis and urine was collected for biochemical analysis (n = 10). Serum biochemistry analysis was performed on days 0, 30, 60, 100 and 110. Growth performance and serum biochemistry were analysed as repeated measures with time and treatment as main factors. The slice option of SAS was used to determine treatment differences at individual time points. There was no effect of feeding GM maize on overall growth, body composition, organ and intestinal weight and histology or serum biochemistry on days 60 and 100 and on urine biochemistry on day 110. A treatment × time interaction was observed for serum urea (SU; P < 0.05), creatinine (SC; P < 0.05) and aspartate aminotransferase (AST; P < 0.05). On day 30, SU was lower for the non-GM/GM treatment compared with the non-GM, GM and GM/non-GM treatments (P < 0.05). On day 110, SC was higher for the non-GM/GM and GM/non-GM treatments compared with non-GM and GM treatments (P < 0.05). Overall, serum total protein was lower for the GM/non-GM treatment compared with the non-GM/GM treatment (P < 0.05). The magnitude of change observed in some serum biochemical parameters did not indicate organ dysfunction and the changes were not accompanied by histological lesions. Long-term feeding of GM maize to pigs did not adversely affect growth or the selected health indicators investigated.  相似文献   

4.
We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (P<0.10) following 31 days of GM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (P<0.05) in response to feeding GM maize while the proportion of CD4(+) T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4(+) T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (P<0.05) in response to feeding GM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable.  相似文献   

5.
Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC=64 to >256 μg/ml) and to carry mosaic (recombinant) tetracycline resistance genes. Baby pigs inherit intestinal microbiota from the mother sow. In these investigations we addressed two questions. When do M. elsdenii strains from the sow colonize baby pigs? Can five antibiotic-sensitive M. elsdenii strains administered intragastrically to newborn pigs affect natural colonization of the piglets by antibiotic-resistant (AR) M. elsdenii strains from the mother? M. elsdenii natural colonization of newborn pigs was undetectable (<104 CFU/g [wet weight] of feces) prior to weaning (20 days after birth). After weaning, all pigs became colonized (4 × 105 to 2 × 108 CFU/g feces). In a separate study, 61% (76/125) of M. elsdenii isolates from a gravid sow never exposed to antibiotics were resistant to chlortetracycline, ampicillin, or tylosin. The inoculation of the sow''s offspring with mixtures of M. elsdenii antibiotic-sensitive strains prevented colonization of the offspring by maternal AR strains until at least 11 days postweaning. At 25 and 53 days postweaning, however, AR strains predominated. Antibiotic susceptibility phenotypes and single nucleotide polymorphism (SNP)-based identities of M. elsdenii isolated from sow and offspring were unexpectedly diverse. These results suggest that dosing newborn piglets with M. elsdenii antibiotic-sensitive strains delays but does not prevent colonization by maternal resistant strains. M. elsdenii subspecies diversity offers an explanation for the persistence of resistant strains in the absence of antibiotic selection.  相似文献   

6.
The objective of the experiment was to determine whether passive immunization against inhibin at weaning would increase FSH secretion and thereby influence postweaning reproductive performance in sows. Commercial Yorkshire sows (n = 173) were assigned within parity to 5 alpha-inhibin fragment antibody (alpha-IF-Ab) dosage groups: 0 (control), 3.25, 6.5, 13 and 26 RP-2 kU/kg alpha-IF-Ab. Antibody had been semipurified from ovine antisera raised against alpha-IF, a peptide that mimicked the N-terminal region of inhibin's alpha-subunit. A RP-2 U refers to a laboratory reference preparation. Sows were administered a single intramuscular injection of control solution or alpha-IF-Ab just before 21-d-old piglets were weaned. Blood samples were taken immediately before immunization and 24 h later. Sows were bred upon expression of estrus. Serum alpha-IF-Ab titers in sows 24 h following passive immunization increased (P < 0.001) with dosage. In control sows serum FSH concentrations decreased 24% by 24 h postweaning (P < 0.001). The decrease was diminished or prevented by alpha-IF-Ab treatment in a dose-responsive manner (P < 0.001). Most (167/173) sows were bred within 10 d postweaning, and wean-to-service intervals tended (P < 0.1) to be shorter in the 13 and 26 RP-2 kU/kg alpha-IF-Ab dosage groups. Farrowing rate was 72% (124/173) and was similar among sows in the alpha-IF-Ab dosage groups. Litter size, expressed as total or live piglets born per sow or per sow farrowed, was unchanged by alpha-IF-Ab treatment. Results demonstrate that 1) inhibin plays a key role in regulating FSH secretion at weaning, and 2) blocking the acute postweaning drop in FSH secretion has little if any effect on subsequent reproductive performance.  相似文献   

7.
Reduced protein levels in nursery diets have been associated with a lower risk of postweaning diarrhea, but the interaction with CP levels in maternal diet on the performance of the offspring remains unclear. The objective of this study was to determine the effect of protein content in sow gestation and piglet nursery diets on the performance of the piglets until slaughter. This was studied in a 2 × 2 factorial trial (35 sows, 209 piglets), with higher or lower (H or L) dietary CP in sow diets (168 vs 122 g CP/kg) during late gestation. A standard lactation feed was provided for all sows (160 g CP/kg). For both sow treatments, half of the litters received a higher or lower CP in the piglet nursery diet (210 vs 166 g CP/kg). This resulted in four possible treatment combinations: HH, HL, LH and LL, with sow treatment as first and piglet treatment as second letter. For each phase, all diets were iso-energetic and had a similar level of essential amino acids. Ps*p is the p-value for the interaction effect between sow and piglet treatment. In the nursery phase (3.5–9 weeks of age), a tendency toward interaction between piglet and sow treatments with feed efficiency (Ps*p = 0.08) was observed with HH having the highest gain:feed ratio (G:F) (0.74 ± 0.01), LH the lowest (0.70 ± 0.01) and the other two groups intermediate. In the growing-finishing phase, an interaction was observed between the piglet and sow diets with decreased G:F for LH (Ps*p = 0.04) and a tendency toward interaction with increased daily feed intake for LH (Ps*p = 0.07). The sow diet showed a tendency toward a long-lasting effect on the dressing percentage and meat thickness of the offspring, which was higher for the progeny of H sows (Ps < 0.01 and Ps = 0.02, respectively). At 23 weeks, serum urea concentrations tended to be lower for the HH and LL groups (Ps*p = 0.07). Fecal consistency scores were higher at day 10–day 14 after weaning for piglets from L sows (Ps = 0.03 and Ps < 0.01, respectively). At day 7 after weaning, fecal consistency score was higher for piglets fed the higher protein diet (Pp < 0.01). At 8 weeks of age, the apparent total tract digestibility of CP (ATTDCP) interacted between piglet and sow diet (Ps*p = 0.02), with HH showing the highest digestibility values. In conclusion, the protein levels in sow late-gestation and piglet nursery diets interacted with feed efficiency, ATTDCP and serum urea concentrations in the nursery phase.  相似文献   

8.
The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals’ clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.  相似文献   

9.
The importance of maternal care in commercial pig production is largely ignored. The sow has little possibility to interact with her piglets, and piglets are often subjected to early weaning or artificial rearing. This study aimed to investigate aspects of physiological and behavioural maternal provisioning that contribute to offspring outcomes. We hypothesised that better maternal care and nutritional provisioning would relate positively to piglet immunity, growth and behaviour. Nineteen sows and their litters were studied in free-farrowing pens. Oxytocin and tumour necrosis factor-α in colostrum/milk and salivary cortisol were sampled from sows throughout lactation. Sows were assessed for dominance rank, response to handling, maternal defensiveness, suckling initiation and termination, posture and sow-piglet contact. Piglets were weighed, measured for body mass index (BMI) and sampled for blood (Immunoglobulin G; at birth). After weaning, they experienced a human approach test (HAT) and novel object test. Correlations were explored between individual sow characteristics, individual piglet outcomes, and between sow characteristics and piglet outcomes averaged by litter. Significant correlations between sow and piglet factors were analysed at the litter level in mixed models with piglet outcomes as response variables and sow characteristics as predictor variables, while accounting for sow parity, litter size and batch. Litters grew faster when their sow had lower cortisol values (P = 0.03), while sows with lower cortisol levels had more successful suckling bouts and engaged in greater amounts of sow-piglet contact. Litters had a lower BMI at weaning when the sow had a higher milk fat percentage at d3. Litters of the most dominant sows took longer to approach the human in the HAT, while litters of sows with higher cortisol at d0 took longer to approach the novel object when assessed on correlations (r = 0.82, P < 0.001) but not when the model accounted for parity and litter size (P = 0.35). Only some of the measured nutritive and non-nutritive sow factors influenced litter performance and behaviour, with parity and litter size also playing a role. Given the continued increase in litter size, but also the interest in loose-housed lactation pens for sows, further research on sows’ maternal investment and how it can be optimised is warranted.  相似文献   

10.
Selection of appropriate housing conditions for sows is critical for their physical health and long-term reproductive success. The present objective was to evaluate the influences of housing system postweaning (i.e., individual stalls (IS) or group pens (GP)), season and parity on piglet productivity of sows in a commercial setting. This study utilized 3 053 Polish Large White × Polish Landrace sows that were weaned at a rate of 20–30 animals per week at the median age of 4 weeks; 1 474 sows were moved into GP of seven to eight animals each, while 1 579 were placed in IS after weaning. Starting 2 days postweaning all animals were checked for estrus with a teaser boar and then artificially inseminated using 3 × 109 spermatozoa per dose of an inseminate at the onset of heat and 24 h later. The proportion of sows showing the signs of standing heat at or before 6 days postweaning was greater (P < 0.05) for sows moved to GP compared with IS; this difference manifested mainly in second parity sows weaned in the summer and fall. Conception and farrowing rates were significantly higher (P < 0.01) and the weaning-to-estrus interval shorter in GP compared with IS sows in every season but autumn. Mean litter size was lower (P < 0.05) in IS groups in summer, autumn, and winter, and the number of live-born piglets/sow was lower (P < 0.05) for IS sows in the summer and fall. Beneficial effects of group housing on piglet productivity manifested up until the seventh consecutive farrowing and then began to wane. In summary, there was a significantly greater proportion of sows going estrus “on time” (i.e., < 7 days) in group housing compared to single stalls but this effect was confined to the second parity sows during the summer and fall months; these results suggest the existence of a seasonal and age-related aspect to sow fertility worthy of further investigation. While both housing systems have their pros and cons, our present results indicate that, in commercial settings, group housing postweaning improved nearly all reproductive parameters of sows.  相似文献   

11.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

12.
The metabolic status of the sow during lactation might influence reproductive endocrinology and the postweaning reproductive performance. With regard to the multiparous sow, previous studies addressing this topic are scarce and the results inconsistent. Blood samples were collected from 18 multiparous sows during lactation and after weaning for analysis of nonesterified fatty acids (NEFA), triglycerides, creatinine, urea progesterone, LH, and estradiol-17beta. Based on the average preweaning NEFA levels the sows were divided into a "high" and a "low" catabolism group. The NEFA values were higher in the "high" group during each of the last 3 weeks of lactation. The levels of urea, creatinine and progesterone were similar (P > 0.05) in the two groups throughout the study. Reproductive functions seemed equally inhibited during lactation in the two groups and there were no differences in postweaning reproductive performance. The results suggest that metabolic rate during lactation varies considerably between equally nourished multiparous sows but this has no influence on postweaning reproductive performance.  相似文献   

13.
Management strategies are needed to optimise the number of piglets weaned from hyper-prolific sows. Nurse sow strategies involve transferring supernumerary new-born piglets onto a sow whose own piglets are either weaned or fostered onto another sow. Such ‘nurse sows’ have extended lactations spent in farrowing crates, which could have negative implications for their welfare. This study used 47 sows, 20 of which farrowed large litters and had their biggest piglets fostered onto nurse sows which were either 1 week (2STEP7, n=9) or 3 weeks into lactation (1STEP21, n=10). Sows from which piglets were removed (R) were either left with the remainder of the litter intact (I) (remain intact (RI) sows, n=10), or had their litters equalised (E) for birth weight using piglets of the same age from non-experimental sows (remain equalised (RE) sows, n=9). Piglets from 2STEP7 were fostered onto another nurse sow which was 3 weeks into lactation (2STEP21, n=9). Back-fat thickness was measured at entry to the farrowing house, at fostering (nurse sows only) and weaning. Sows were scored for ease of locomotion and skin and claw lesions at entry to the farrowing house and weaning. Salivary cortisol samples were collected and tear staining was scored at 0900 h weekly from entry until weaning. Saliva samples were also taken at fostering. Data were analysed using GLMs with appropriate random and repeated factors, or non-parametric tests were applied where appropriate. Back-fat thickness decreased between entry and weaning for all sows (F1,42=26.59, P<0.001) and tended to differ between treatments (F4,16=2.91; P=0.06). At weaning RI sows had lower limb lesion scores than 2STEP7 and RE sows (χ24=10.8, P<0.05). No treatment effects were detected on salivary cortisol concentrations (P>0.05) and all nurse sows had a higher salivary cortisol concentration at fostering, compared with the other days (F10,426=3.47; P<0.05). Acute effects of fostering differed between nurse sow treatments (F2,113=3.45, P<0.05); 2STEP7 sows had a higher salivary cortisol concentration than 1STEP21 and 2STEP21 sows on the day of fostering. 2STEP7 sows had a higher salivary cortisol concentration at fostering, compared with 1STEP21 and 2STEP21 sows. Tear staining scores were not influenced by treatment (P>0.05). In conclusion, no difference was detected between nurse sows and non-nurse sows in body condition or severity of lesions. Although some nurse sows experienced stress at fostering, no long-term effect of the nurse sow strategies was detected on stress levels compared with sows that raised their own litter.  相似文献   

14.
Knowledge of periparturient longitudinal changes in sow microbiota composition is necessary to fully understand her role in the development of the piglet microbiota, but also to improve gut health and performance of the sow in lactation. Primiparous sows face the challenge of partitioning nutrients to support maternal growth in addition to supporting foetal growth and the demands of lactation. Additional metabolic stress present during the periparturient period may induce changes in the microbiota profile between primiparous and multiparous sows. Using 16S rRNA gene sequencing, the study aimed to characterise the longitudinal changes in the periparturient microbiota and identify differences within the sow microbiota profile associated with parity. Faecal samples from primiparous (n = 13) and multiparous (n = 16) sows were collected at four different time points (day - 6, - 1, 3 and 8) in relation to farrowing (day 0). Microbiota richness was lowest on day 3 and - 1 of the periparturient period (P < 0.05). Microbiota community composition, assessed by weighted and unweighted UniFrac distances, demonstrated longitudinal changes, with day 3 samples clustering away from all other sampling time points (P < 0.05). The relative abundance of several genera segregated gestation from lactation samples including Roseburia, Prevotella 1, Prevotella 2, Christensenellaceae R-7 group, Ruminococcaceae UCG-002 and Ruminococcaceae UCG-010 (P < 0.01). Furthermore, day 3 was characterised by a significant increase in the relative abundance of Escherichia/Shigella, Fusobacterium and Bacteroides, and a decrease in Alloprevotella, Prevotellaceae UCG-003 and Ruminococcus 1 (P < 0.001). Primiparous sows had overall lower periparturient microbiota diversity (P < 0.01) and there was a significant interaction between parity and sampling time point, with primiparous sows having lower microbiota richness on day - 6 (P < 0.001). There was a significant interaction between sow parity and sampling time point on microbiota composition on day - 6 and - 1 (unweighted UniFrac distances; 0.01) and day 8 (weighted and unweighted UniFrac distances; P < 0.05). Whilst no significant interactions between sow parity and sampling day were observed for genera relative abundances, multiparous sows had a significantly higher relative abundance of Bacteroidetes dgA-11 gut group and Prevotellaceae UCG-004 (P < 0.01). This study demonstrates that the sow microbiota undergoes longitudinal changes, which are collectively related to periparturient changes in the sow environment, diet and physiological changes to support foetal growth, delivery and the onset of lactation, but also sow parity.  相似文献   

15.
Azaperone treatment can control aggression and decrease stress due to weaning, re-grouping and hierarchical fighting of gilts and sows. However, the effects of this butyrophenone neuroleptic and sedative administered at weaning on pig reproductive function are poorly characterized. In this year-long study, a total of 619 cross-bred sows (Polish Large White×Polish Landrace) kept on a commercial farm received an i.m. injection of azaperone (Stresnil®; 2 mg/kg BW) just before weaning and were artificially inseminated during the ensuing estrus with 3×109 spermatozoa per dose of an inseminate; 1180 sows served as untreated controls. Immediately after weaning, the sows were moved to four pens of seven to nine animals each. A teaser boar was used twice daily to check for estrus and sows were bred at heat detection. Subsequently, all sows stayed in individual stalls until pregnancy testing on day 30 post-artificial insemination and were then re-grouped until farrowing. The proportion of pigs that were in estrus within 6 days post-weaning was significantly lower in azaperone-treated groups of animals than in controls (71.4% v. 84.2%). Overall, the azaperone-treated sows had a significantly longer weaning-to-estrus interval (WEI; 8.7±10.1 v. 6.3±8.1 days; mean±SD) and a significantly larger litter size (LS: 11.8±3.0 v.11.3±3.2; azaperone-treated v. control sows). Treatment of the winter-farrowing sows was associated with increased LS (12.8±2.6 and 11.3±3.1 piglets/sow, respectively; P<0.05) and longer (P<0.05) weaning-to-effective-service intervals (11.7±19.3 and 8.4±12.3 days, respectively) as well as farrowing intervals (155.7±19.7 and 152.2±16.1 days, respectively) compared with untreated controls. In the summer months, significantly longer WEIs (12.1±21.0 v. 8.4±16.9 days) were accompanied by a significant decline in LS only in azaperone-treated sows that were inseminated within 6 days post-weaning (10.8±2.9 v. 11.5±3.3 piglets/sow; azaperone-treated v. controls). Azaperone-treated second parity sows had greater LS (P<0.001) along with prolonged WEIs (P<0.05) in comparison to their respective controls, regardless of the timing of estrus. An application of azaperone at weaning increased the annual piglet productivity of winter-farrowing animals and of second parity sows but depressed it significantly in summer. The extra cost and labor due to delayed onset of estrus may cancel out any reproductive benefits of azaperone treatment.  相似文献   

16.
Feeding n-3 long-chain polyunsaturated fatty acids (LCPUFA) to gilts or sows has shown different responses to litter growth, pre-weaning mortality and subsequent reproductive performance of the sow. Two hypotheses were tested: (1) that feeding a marine oil-based supplement rich in protected n-3 LCPUFAs to gilts in established gestation would improve the growth performance of their litters; and (2) that continued feeding of the supplement during lactation and after weaning would offset the negative effects of lactational catabolism induced, using an established experimental model involving feed restriction of lactating primiparous sows. A total of 117 primiparous sows were pair-matched at day 60 of gestation by weight, and when possible, litter of origin, and were allocated to be either control sows (CON) fed standard gestation and lactation diets, or treated sows (LCPUFA) fed the standard diets supplemented with 84 g/day of a n-3 LCPUFA rich supplement, from day 60 of first gestation, through a 21-day lactation, and until euthanasia at day 30 of their second gestation. All sows were feed restricted during the last 7 days of lactation to induce catabolism, providing a background challenge against which to determine beneficial effects of n-3 LCPUFA supplementation on subsequent reproduction. In the absence of an effect on litter size or birth weight, n-3 LCPUFA tended to improve piglet BW gain from birth until 34 days after weaning (P = 0.06), while increasing pre-weaning mortality (P = 0.05). It did not affect energy utilization by the sow during lactation, thus not improving the catabolic state of the sows. Supplementation from weaning until day 30 of second gestation did not have an effect on embryonic weight, ovulation rate or early embryonic survival, but did increase corpora lutea (CL) weight (P = 0.001). Eicosapentaenoic acid and docosahexaenoic acid (DHA) levels were increased in sow serum and CL (P < 0.001), whereas only DHA levels increased in embryos (P < 0.01). In conclusion, feeding n-3 LCPUFA to gilts tended to improve litter growth, but did not have an effect on overall subsequent reproductive performance.  相似文献   

17.
Ovulation frequency during late lactation was determined among 114 sows from four commercial farms that group-housed the sows from about 3 weeks of lactation until weaning (G-farms), and among 21 sows from one farm that kept the sows individually penned throughout lactation (C-farm). Ovulation frequency was determined by applying a progesterone assay on faecal samples collected at weekly intervals from time of grouping until 3 weeks after weaning. The groups consisted of 11–22 sows and boar contact was not allowed during the 5–6 week lactation period. G-farm sows were fed ad libitum while C-farm sows were provided with a restricted food ration. During the group-housing period, 28% of the G-farm sows ovulated, whereas none of the singly housed sows ovulated during the corresponding period (P = 0.005). Ovulation frequency varied considerably between sow groups (0–54%) (P = 0.004), owing partly to differences in age. Not a single primiparous sow ovulated, whereas ovulation frequency among second to fourth parity sows and older sows (fifth parity and over) was 6% and 48%, respectively (P < 0.001). At the time of grouping and weaning, neither backfat thickness nor litter size differed between the sows that ovulated and those that were anoestrous. Preweaning mammary gland atrophy, indicating that milk production had ceased, was noted in 16% of the G-farm sows that ovulated but in only one (1%) of the anoestrus sows. Only 65% of the sows showing lactational ovulation were mated within 10 days after weaning. By contrast, 87% of the G-farms sows that were anoestrus during lactation and 100% of the C-farm sows were mated within this period.  相似文献   

18.
The effects of a marine oil-based n-3 long-chain polyunsaturated fatty acid (mLCPUFA) supplement fed to the sow from weaning, through the rebreeding period, during gestation and until end of lactation on litter characteristics from birth until weaning were studied in sows with known litter birth weight phenotypes. It was hypothesized that low birth weight (LBW) litters would benefit more from mLCPUFA supplementation than high birth weight litters. A total of 163 sows (mean parity=4.9±0.9) were rebred after weaning. Sows were pair-matched by parity and litter average birth weight of the previous three litters. Within pairs, sows were allocated to be fed either standard corn/soyabean meal-based gestation and lactation diets (CON), or the same diets enriched with 0.5% of the mLCPUFA supplement at the expense of corn. Each litter between 9 and 16 total pigs born was classified as LBW or medium/high average birth weight (MHBW) litter and there was a significant correlation (P<0.001) between litter average birth weight of the current and previous litters within sows (r=0.49). Sow serum was harvested at day 113 of gestation for determination of immunoglobulin G (IgG) concentrations. The number of pigs born total and alive were lower (P=0.01) in mLCPUFA than CON sows, whereas the number of stillborn and mummified pigs were similar between treatments. Number of stillborns (trend) and mummies (P<0.01) were higher in LBW than MHBW litters. Tissue weights and brain : tissue weight ratios were similar between treatments, but LBW litters had decreased tissue weights and increased brain : tissue weight ratios compared with MHBW litters. Placental weight was lower (P=0.01) in LBW than MHBW litters, but was not different between treatments. Average and total litter weight at day 1 was similar between treatments. mLCPUFA increased weaning weight (P=0.08) and average daily gain (P<0.05) in MHBW litters, but not in LBW litters. Pre-weaning mortality was similar between treatments, but was higher (P<0.01) in LBW than MHBW litters. IgG concentration in sow serum was similar between treatments and litter birth weight categories. In conclusion, litter birth weight phenotype was repeatable within sows and LBW litters showed the benchmarks of intra-uterine growth retardation (lower placental weight and brain sparing effects). As maternal mLCPUFA supplementation decreased litter size overall, only improved litter growth rate until weaning in MHBW litters, and did not affect pre-weaning mortality, maternal mLCPUFA supplementation was not an effective strategy in our study for mitigating negative effects of a LBW litter phenotype.  相似文献   

19.

Background

The intestinal microbiota is increasingly linked to the pathogenesis of chronic enteropathies (CE) in dogs. While imbalances in duodenal and fecal microbial communities have been associated with mucosal inflammation, relatively little is known about alterations in mucosal bacteria seen with CE involving the ileum and colon.

Aim

To investigate the composition and spatial organization of mucosal microbiota in dogs with CE and controls.

Methods

Tissue sections from endoscopic biopsies of the ileum and colon from 19 dogs with inflammatory bowel disease (IBD), 6 dogs with granulomatous colitis (GC), 12 dogs with intestinal neoplasia, and 15 controls were studied by fluorescence in situ hybridization (FISH) on a quantifiable basis.

Results

The ileal and colonic mucosa of healthy dogs and dogs with CE is predominantly colonized by bacteria localized to free and adherent mucus compartments. CE dogs harbored more (P < 0.05) mucosal bacteria belonging to the Clostridium-coccoides/Eubacterium rectale group, Bacteroides, Enterobacteriaceae, and Escherichia coli versus controls. Within the CE group, IBD dogs had increased (P < 0.05) Enterobacteriaceae and E. coli bacteria attached onto surface epithelia or invading within the intestinal mucosa. Bacterial invasion with E. coli was observed in the ileal and colonic mucosa of dogs with GC (P < 0.05). Dogs with intestinal neoplasia had increased (P < 0.05) adherent (total bacteria, Enterobacteriaceae, E. coli) and invasive (Enterobacteriaceae, E. coli, and Bacteroides) bacteria in biopsy specimens. Increased numbers of total bacteria adherent to the colonic mucosa were associated with clinical disease severity in IBD dogs (P < 0.05).

Conclusion

Pathogenic events in canine CE are associated with different populations of the ileal and colonic mucosal microbiota.  相似文献   

20.
The gastrointestinal microbiota plays a crucial role in the health and disease of the host through its impact on nutrition. Gut microbial composition is related to different diets, but an association of microbiota with different diets in infant has not yet been shown. In this work, we compared the fecal microbiota of breast-fed (BF) and formula-fed infants (FF). By using Illumina high-throughput sequencing and biochemical analyses, we found differences in gut microbiota between the two groups. BF infants showed a significant enrichment of Actinobacteria and Firmicutes and depletion of Proteobacteria (P < 0.05), the abundance of Bacteroidetes in the two groups was very low (P > 0.05). Enterobacteriaceae (Proteobacteria) were the dominant bacteria in FF infant fecal microbiota, and Veillonellaceae (Firmicutes) and Enterobacteriaceae (Proteobacteria) were the dominant bacteria in the BF infant fecal microbiota. The number of genera (percentage of sequences >0.1 %) in BF and FF infants was 17 and 15 respectively, and Streptococcus was the dominant bacterial genus in both groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号