首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Human noroviruses (HuNoV) are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ss)DNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV). Four aptamer candidates (designated 19, 21, 25 and 26) were identified and screened for binding affinity to 14 different virus-like particles (VLPs) corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA). Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV) and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC) method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5–36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types.  相似文献   

2.
3.
Human noroviruses (HuNoV) are a major cause of nonbacterial gastroenteritis worldwide, yet details of the life cycle and replication of HuNoV are relatively unknown due to the lack of an efficient cell culture system. Studies with murine norovirus (MNV), which can be propagated in permissive cells, have begun to probe different aspects of the norovirus life cycle; however, our understanding of the specific functions of the viral proteins lags far behind that of other RNA viruses. Genome-wide functional profiling by insertional mutagenesis can reveal protein domains essential for replication and can lead to generation of tagged viruses, which has not yet been achieved for noroviruses. Here, transposon-mediated insertional mutagenesis was used to create 5 libraries of mutagenized MNV infectious clones, each containing a 15-nucleotide sequence randomly inserted within a defined region of the genome. Infectious virus was recovered from each library and was subsequently passaged in cell culture to determine the effect of each insertion by insertion-specific fluorescent PCR profiling. Genome-wide profiling of over 2,000 insertions revealed essential protein domains and confirmed known functional motifs. As validation, several insertion sites were introduced into a wild-type clone, successfully allowing the recovery of infectious virus. Screening of a number of reporter proteins and epitope tags led to the generation of the first infectious epitope-tagged noroviruses carrying the FLAG epitope tag in either NS4 or VP2. Subsequent work confirmed that epitope-tagged fully infectious noroviruses may be of use in the dissection of the molecular interactions that occur within the viral replication complex.  相似文献   

4.
Foodborne outbreaks of human noroviruses (HuNoVs) are frequently associated with leafy greens. Because there is no effective method to eliminate HuNoV from postharvest leafy greens, understanding virus survival under preharvest conditions is crucial. The objective of this study was to evaluate the survival of HuNoV and its surrogate viruses, murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV), on preharvest lettuce and spinach that were subjected to abiotic stress (physical damage, heat, or flood). We also examined the bacteria culturable from the phyllosphere in response to abiotic stress and in relation to viral persistence. Mature plants were subjected to stressors 2 days prior to inoculation of the viruses on leaves. We quantified the viral RNA, determined the infectivity of the surrogates, and performed bacterial counts on postinoculation days (PIDs) 0, 1, 7, and 14. For both plant types, time exerted significant effects on HuNoV, MNV, SaV, and TV RNA titers, with greater effects being seen for the surrogates. Infectious surrogate viruses were undetectable on PID 14. Only physical damage on PID 14 significantly enhanced HuNoV RNA persistence on lettuce, while the three stressors differentially enhanced the persistence of MNV and TV RNA. Bacterial counts were significantly affected by time and plant type but not by the stressors. However, bacterial counts correlated significantly with HuNoV RNA titers on spinach and with the presence of surrogate viruses on both plant types under various conditions. In conclusion, abiotic stressors and phyllosphere bacterial density may differentially influence the survival of HuNoV and its surrogates on lettuce and spinach, emphasizing the need for the use of preventive measures at the preharvest stage.  相似文献   

5.
Human noroviruses are a major cause of food-borne illness, accountable for 50% of all-etiologies outbreaks of acute gastroenteritis (in both developing and developed countries). There is no vaccine or antiviral drug for the prophylaxis or treatment of norovirus-induced gastroenteritis. We recently reported the inhibitory effect of 2′-C-methylcytidine (2CMC), a hepatitis C virus polymerase inhibitor, on the in vitro replication of murine norovirus (MNV). Here we evaluated the inhibitory effect of 2CMC on in vitro human norovirus replication through a Norwalk virus replicon model and in a mouse model by using AG129 mice orally infected with MNV. Survival, weight, and fecal consistency were monitored, and viral loads in stool samples and organs were quantified. Intestines were examined histologically. 2CMC reduced Norwalk virus replicon replication in a dose-dependent manner and was able to clear cells of the replicon. Treatment of MNV-infected AG129 mice with 2CMC (i) prevented norovirus-induced diarrhea; (ii) markedly delayed the appearance of viral RNA and reduced viral RNA titers in the intestine, mesenteric lymph nodes, spleen, lungs, and stool; (iii) completely prevented virus-induced mortality; and (iv) resulted in protective immunity against a rechallenge. We demonstrate for the first time that a small-molecule inhibitor of norovirus replication protects from virus-induced disease and mortality in a relevant animal model. These findings pave the way for the development of potent and safe antivirals as prophylaxis and therapy of norovirus infection.  相似文献   

6.
Aims: To evaluate the reduction of human norovirus (HuNoV) by chlorine disinfection under typical drinking water treatment conditions. Methods and Results: HuNoV, murine norovirus (MNV) and poliovirus type 1 (PV1) were inoculated into treated water before chlorination, collected from a drinking water treatment plant, and bench‐scale free chlorine disinfection experiments were performed for two initial free chlorine concentrations, 0·1 and 0·5 mg l?1. Inactivation of MNV reached more than 4 log10 after 120 and 0·5 min contact time to chlorine at the initial free chlorine concentrations of 0·1 and 0·5 mg l?1, respectively. Conclusions: MNV was inactivated faster than PV1, and there was no significant difference in the viral RNA reduction rate between HuNoV and MNV. The results suggest that appropriate water treatment process with chlorination can manage the risk of HuNoV infection via drinking water supply systems. Significance and Impact of the Study: The data obtained in this study would be useful for assessing or managing the risk of HuNoV infections from drinking water exposure.  相似文献   

7.
Sattar SA  Ali M  Tetro JA 《PloS one》2011,6(2):e17340
Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV.  相似文献   

8.
9.
Two cardinal manifestations of viral immunity are efficient clearance of acute infection and the capacity to vaccinate against secondary viral exposure. For noroviruses, the contributions of T cells to viral clearance and vaccination have not been elucidated. We report here that both CD4 and CD8 T cells are required for efficient clearance of primary murine norovirus (MNV) infection from the intestine and intestinal lymph nodes. Further, long-lasting protective immunity was generated by oral live virus vaccination. Systemic vaccination with the MNV capsid protein also effectively protected against mucosal challenge, while vaccination with the capsid protein of the distantly related human Lordsdale virus provided partial protection. Fully effective vaccination required a broad immune response including CD4 T cells, CD8 T cells, and B cells, but the importance of specific immune cell types varied between the intestine and intestinal lymph nodes. Perforin, but not interferon gamma, was required for clearance of MNV infection by adoptively transferred T lymphocytes from vaccinated hosts. These studies prove the feasibility of both mucosal and systemic vaccination against mucosal norovirus infection, demonstrate tissue specificity of norovirus immune cells, and indicate that efficient vaccination strategies should induce potent CD4 and CD8 T cell responses.  相似文献   

10.
Human noroviruses cause more than 90% of epidemic nonbacterial gastroenteritis. However, the role of B cells and antibody in the immune response to noroviruses is unclear. Previous studies have demonstrated that human norovirus specific antibody levels increase upon infection, but they may not be protective against infection. In this report, we used murine norovirus (MNV), an enteric norovirus, as a model to determine the importance of norovirus specific B cells and immune antibody in clearance of norovirus infection. We show here that mice genetically deficient in B cells failed to clear primary MNV infection as effectively as wild-type mice. In addition, adoptively transferred immune splenocytes derived from B-cell-deficient mice or antibody production-deficient mice were unable to efficiently clear persistent MNV infection in RAG1(-/-) mice. Further, adoptive transfer of either polyclonal anti-MNV serum or neutralizing anti-MNV monoclonal antibodies was sufficient to reduce the level of MNV infection both systemically and in the intestine. Together, these data demonstrate that antibody plays an important role in the clearance of MNV and that immunoglobulin G anti-norovirus antibody can play an important role in clearing mucosal infection.  相似文献   

11.
The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cleavage sites inserted into a linker region separating cyan fluorescent protein and yellow fluorescent protein. Using this system, we demonstrate that differences in substrate processing exist between proteases from human noroviruses (genogroups I (GI) and II) and the commonly used murine norovirus (MNV, genogroup V) model. These altered the cleavage efficiency of specific cleavage sites both within and between genogroups. The differences observed between these proteases may affect sensitivity to protease inhibitors and the suitability of MNV as a model system for testing such molecules against the human norovirus protease. Finally, we demonstrate that replacement of MNV polyprotein cleavage sites with the GI or GII equivalents, with the exception of the NS6–7 junction, leads to the production of infectious virus when the MNV NS6 protease, but not the GI or GII proteases, are present.  相似文献   

12.
Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence.  相似文献   

13.
Millions of people suffer from foodborne diseases throughout the world every year, and the importance of food safety has grown worldwide in recent years. The aim of this study was to investigate the survival of hepatitis A virus (HAV) and viral surrogates of human norovirus (HuNoV) (bacteriophage MS2 and murine norovirus [MNV]) in food over time. HAV, MNV, and MS2 were inoculated onto either the digestive gland of oysters or the surface of fresh peppers, and their survival on these food matrices was measured under various temperature (4°C, 15°C, 25°C, and 40°C) and relative humidity (RH) (50% and 70%) conditions. Inoculated viruses were recovered from food samples and quantified by a plaque assay at predetermined time points over 2 weeks (0, 1, 3, 7, 10, and 14 days). Virus survival was influenced primarily by temperature. On peppers at 40°C and at 50% RH, >4- and 6-log reductions of MNV and HAV, respectively, occurred within 1 day. All three viruses survived better on oysters. In addition, HAV survived better at 70% RH than at 50% RH. The survival data for HAV, MS2, and MNV were fit to three different mathematical models (linear, Weibull, and biphasic models). Among them, the biphasic model was optimum in terms of goodness of fit. The results of this study suggest that major foodborne viruses such as HAV and HuNoV can survive over prolonged periods of time with a limited reduction in numbers. Because a persistence of foodborne virus on contaminated foods was observed, precautionary preventive measures should be performed.  相似文献   

14.
15.
Human norovirus (HuNoV) is the leading cause of foodborne illnesses, with an increasing number of outbreaks associated with leafy greens. Because HuNoV cannot be routinely cultured, culturable feline calicivirus (FCV), murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV) have been used as surrogates. These viruses are generated in different cell lines as infected cell lysates, which may differentially affect their stability. Our objective was to uniformly compare the survival of these viruses on postharvest lettuce while evaluating the effects of cell lysates on their survival. Viruses were semipurified from cell lysates by ultrafiltration or ultracentrifugation followed by resuspension in sterile water. Virus survival was examined before and after semipurification: in suspension at room temperature (RT) until day 28 and on lettuce leaves stored at RT for 3 days or at 4°C for 7 and 14 days. In suspension, both methods significantly enhanced the survival of all viruses. On lettuce, the survival of MNV in cell lysates was similar to that in water, under all storage conditions. In contrast, the survival of FCV, SaV, and TV was differentially enhanced, under different storage conditions, by removing cell lysates. Following semipurification, viruses showed similar persistence to each other on lettuce stored under all conditions, with the exception of ultracentrifugation-purified FCV, which showed a higher inactivation rate than MNV at 4°C for 14 days. In conclusion, the presence of cell lysates in viral suspensions underestimated the survivability of these surrogate viruses, while viral semipurification revealed similar survivabilities on postharvest lettuce leaves.  相似文献   

16.
A polymer-based aptasensor, which consisted of fluorescein amidite (FAM)-modified aptamers and coordination polymer nanobelts (CPNBs), was developed utilizing the fluorescence quenching effect to detect sulfadimethoxine residue in food products. A single-stranded DNA (ssDNA) aptamer, which was a specific bio-probe for sulfadimethoxine (Su13; 5'-GAGGGCAACGAGTGTTTATAGA-3'), was discovered by a magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX) technique, and the fluorescent quenchers CPNBs were produced by mixing AgNO(3) and 4,4'-bipyridine. This aptasensor easily and sensitively detected sulfadimethoxine in solution with a limit of detection (LOD) of 10ng/mL. Furthermore, the antibiotic dissolved in milk was also effectively detected with the same LOD value. In addition, this aptamer probe offered high specificity for sulfadimethoxine compared to other antibiotics. These valuable results provide ample evidence that the CPNB-based aptasensor can be used to quantify sulfadimethoxine residue in food products.  相似文献   

17.
Human noroviruses (HuNoVs) are the major cause of epidemic, nonbacterial gastroenteritis worldwide. Due to the lack of a tractable model system and the inability to grow HuNoVs in cell culture, factors required for the norovirus (NoV) life cycle and pathogenesis in the host remain largely unknown. The discovery of murine norovirus (MNV) and the development of reverse-genetics systems for this virus provide an opportunity to study these aspects of NoV infection in vitro and in vivo. Previous studies identified a single amino acid at residue 296 in the protruding (P) domain of the capsid protein that is responsible for determining the virulence of the MNV clone MNV1.CW1 in 12956/SvEv background STAT1-deficient (STAT1(-/-)) mice. In this report, we identified and characterized another determinant of lethality in the P domain that is necessary and sufficient to determine the replication and pathogenesis of the MNV clones MNV1.CW3 and CR6.STL1 in C57BL/6 background STAT1(-/-) mice. Furthermore, we describe how the role of residue 296 in MNV virulence differs between STAT1(-/-) mouse strains. We also describe potential interactions between subdomains of the P domain, as well as between other virus elements, which facilitate recovery of MNV using a reverse-genetics system.  相似文献   

18.
Human norovirus infections are the most common cause of acute nonbacterial gastroenteritis in humans worldwide, and glycan binding plays an important role in the susceptibility to these infections. However, due to the lack of an efficient cell culture system or small animal model for human noroviruses, little is known about the biological role of glycan binding during infection. Murine noroviruses (MNV) are also enteric viruses that bind to cell surface glycans, but in contrast to their human counterparts, they can be grown in tissue culture and a small animal host. In this study, we determined glycan-binding specificities of the MNV strains MNV-1 and CR3 in vitro, identified molecular determinants of glycan binding, and analyzed infection in vivo. We showed that unlike MNV-1, CR3 binding to murine macrophages was resistant to neuraminidase treatment and glycosphingolipid depletion. Both strains depended on N-linked glycoproteins for binding, while only MNV-1 attachment to macrophages was sensitive to O-linked glycoprotein depletion. In vivo, CR3 showed differences in tissue tropism compared to MNV-1 by replicating in the large intestine. Mapping of a glycan-binding site in the MNV-1 capsid by reverse genetics identified a region topologically similar to the histo-blood group antigen (HBGA)-binding sites of the human norovirus strain VA387. The recombinant virus showed distinct changes in tissue tropism compared to wild-type virus. Taken together, our data demonstrate that MNV strains evolved multiple strategies to bind different glycan receptors on the surface of murine macrophages and that glycan binding contributes to tissue tropism in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号